3 research outputs found

    Thermographic signal analysis of friction stir welded AA 5754 H111 joints

    No full text
    Aluminium alloys present some criticalities in terms of fatigue life characterisation due to the absence of a point representing the 'fatigue limit', the topic becomes complicated when the material is welded. In this case, the fatigue characterisation lies on design specifications which have to clearly explain the guidelines for the performing the tests and for evaluating the failures, in order to design tailored welded joints. However, the fatigue of welded joints is a difficult subject since the welding process makes the material different, introducing residual tensions, defect, etc. Also, the standard test methods provide only the estimation of the strength at fixed loading cycles but no information on the damage processes occurring in the material.Prompted by these issues researchers deal with the study of other approaches to achieve not only information on fatigue resistance but also damage information. In particular, the thermography can be used for thermal signal analysis of dissipative heat sources involved in fatigue of material undergoing cyclic test.In this paper, this approach is adopted to study the fatigue behavior of friction stir welded joints of AA5754-H111 during specific loading conditions. The component of the temperature related to intrinsic dissipations is assessed and the fatigue strength is evaluated together with a graphical study of the location of damaged areas

    Studies on environment-friendly gas mixtures for the Resistive Plate Chambers of the ALICE Muon Identifier

    No full text
    International audienceDue to their simplicity and comparatively low cost, Resistive Plate Chambers are gaseous detectors widely used in high-energy and cosmic rays physics, when large detection areas are needed. However, the best gaseous mixtures are currently based on tetrafluoroethane, which has the undesirable characteristic of a large Global Warming Potential (GWP) of about 1400 and, because of this, it is currently being phased out from industrial use. Tetrafluoropropene (which has a GWP close to 1) is being considered as a possible replacement. Since tetrafluoropropene is more electronegative than tetrafluoroethane, it has to be diluted with gases with a lower attachment coefficient in order to maintain the operating voltage close to 10 kV. One of the main candidates for this role is carbon dioxide. In order to ascertain the feasibility and the performance of tetrafluoropropene-CO2 based mixtures, an R&D program is being carried out within the ALICE collaboration, employing an array of 72 Bakelite RPCs (Muon IDentifier, MID) in order to identify muons. Different proportions of tetrafluoropropene and CO2, with the addition of small quantities of isobutane and sulphur hexafluoride, have been tested with 50x50 cm 2 RPC prototypes with 2 mm wide gas gap and 2 mm thick Bakelite electrodes. In this contribution, results from tests with cosmic rays will be presented, together with data concerning the current drawn by a RPC exposed to the gamma-ray flux of the Gamma Irradiation Facility (GIF) at CERN

    Studies on environment-friendly gas mixtures for the Resistive Plate Chambers of the ALICE Muon Identifier

    No full text
    International audienceDue to their simplicity and comparatively low cost, Resistive Plate Chambers are gaseous detectors widely used in high-energy and cosmic rays physics, when large detection areas are needed. However, the best gaseous mixtures are currently based on tetrafluoroethane, which has the undesirable characteristic of a large Global Warming Potential (GWP) of about 1400 and, because of this, it is currently being phased out from industrial use. Tetrafluoropropene (which has a GWP close to 1) is being considered as a possible replacement. Since tetrafluoropropene is more electronegative than tetrafluoroethane, it has to be diluted with gases with a lower attachment coefficient in order to maintain the operating voltage close to 10 kV. One of the main candidates for this role is carbon dioxide. In order to ascertain the feasibility and the performance of tetrafluoropropene-CO2 based mixtures, an R&D program is being carried out within the ALICE collaboration, employing an array of 72 Bakelite RPCs (Muon IDentifier, MID) in order to identify muons. Different proportions of tetrafluoropropene and CO2, with the addition of small quantities of isobutane and sulphur hexafluoride, have been tested with 50x50 cm 2 RPC prototypes with 2 mm wide gas gap and 2 mm thick Bakelite electrodes. In this contribution, results from tests with cosmic rays will be presented, together with data concerning the current drawn by a RPC exposed to the gamma-ray flux of the Gamma Irradiation Facility (GIF) at CERN
    corecore