2 research outputs found

    SYNTHESIS OF BACTERICIDAL MICROFILTRATION CERAMIC MEMBRANES: Received: 01st September 2021; Revised: 25th November 2021, 11th December 2021, 29th January 2022; Accepted: 05th February 2022

    No full text
    Membrane technologies have become widely used in filtration and separation processes in chemical, oil, food, pharmaceutical, medical, environmental, textile industries, etc. Recently, there is a growing demand for the use of bactericidal membranes due to their effectiveness in neutralizing microorganisms. The aim of this work is to synthesize microfiltration ceramic membranes modified with silver nanoparticles to provide them with bactericidal properties. In this work, ceramic membranes are synthesized by dry pressing followed by sintering from natural raw materials of Ukrainian origin, namely: kaolin and saponite, as well as with the addition of silicon carbide, sodium silicate, and calcium carbonate. To provide ceramic membranes with bactericidal properties, they were modified with particles of silver. The synthesized ceramic membranes were characterized by X-ray diffraction and fluorescence analysis, and their bactericidal ability has been established. The ceramic filtration membranes after modification by silvers exhibited an inhibitory effect on the growth of Gram-positive (B. subtilis.) and Gram-negative (Escherichia coli) pathogens. Thus, the obtained bactericidal ceramic membranes are of great interest for their use for biofouling control

    ΠšΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½Ρ– ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΈ: Π½ΠΎΠ²Ρ– Ρ‚Π΅Π½Π΄Π΅Π½Ρ†Ρ–Ρ— Ρ‚Π° пСрспСктиви (ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΉ огляд)

    No full text
    Π”Π°Π½ΠΈΠΉ огляд присвячСний особливостям формування Ρ‚Π° застосування ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Π² водоочисних тСхнологіях. Π£ Π΄Π°Π½Ρ–ΠΉ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– Π½Π° підставі сучасних Π΄ΠΆΠ΅Ρ€Π΅Π» Π±ΡƒΠ»ΠΎ розглянуто ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½Ρ– ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΈ, Ρ—Ρ… Ρ€ΠΎΠ»ΡŒ Ρƒ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΈΡ… тСхнологіях; прСдставлСно Ρ—Ρ… структуру, склад Ρ‚Π° Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Ρƒ ΠΊΠΎΠ½Ρ„Ρ–Π³ΡƒΡ€Π°Ρ†Ρ–ΡŽ; Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ пСрспСктиви Ρ‚Π° прогрСс, Ρ‰ΠΎ ΠΌΠΎΠΆΠ½Π° досягти Ρƒ ΠΌΠ°ΠΉΠ±ΡƒΡ‚Π½ΡŒΠΎΠΌΡƒ, ΠΏΡ€ΠΈ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Π½Π° ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½Ρ–ΠΉ основі. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ порівняння Π· ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΠΌΠΈ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°ΠΌΠΈ, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ– якого Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ, Ρ‰ΠΎ використання ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Ρ” Π±Ρ–Π»ΡŒΡˆ Π±Π΅Π·ΠΏΠ΅Ρ‡Π½ΠΈΠΌ для ΠΎΡ‚ΠΎΡ‡ΡƒΡŽΡ‡ΠΎΠ³ΠΎ сСрСдовища Ρ‚Π° Π±ΡƒΠ΄Π΅ сприяти ΡΡ‚Π²ΠΎΡ€Π΅Π½Π½ΡŽ стійких Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–ΠΉ водоочищСння, які ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ Ρ†Ρ–Π»ΠΊΠΎΠΌ Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΈΠΌΠΈ. Розглянуто ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ синтСзу Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΡˆΠ°Ρ€Ρƒ, модифікування, фабрикування ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½. Π—Π°Π·Π½Π°Ρ‡Π΅Π½ΠΎ, Ρ‰ΠΎ модифікація ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ наночастинками Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ΡŒ ΠΌΠ°Π½Ρ–ΠΏΡƒΠ»ΡŽΠ²Π°Ρ‚ΠΈ Ρ—Ρ… ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΎΡŽ Ρ‚Π° властивостями. Використання ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠ°Ρ‚ΠΎΡ€Ρ–Π² TiO2, ZnO, Ag Ρ‚ΠΎΡ‰ΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ΡŒ Π½Π°Π΄Π°Ρ‚ΠΈ ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΈΠΌ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°ΠΌ ΠΏΠΎΠ»Ρ–Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΡ… властивостСй. ΠΠ΅Π·Π²Π°ΠΆΠ°ΡŽΡ‡ΠΈ Π½Π° ΡˆΠΈΡ€ΠΎΠΊΠΎ Π²ΠΈΠ·Π½Π°Π½Ρ– Ρ—Ρ… Π½Π΅Π΄ΠΎΠ»Ρ–ΠΊΠΈ – ΠΊΡ€ΠΈΡ…ΠΊΡ–ΡΡ‚ΡŒ Ρ‚Π° Π²Π°Ρ€Ρ‚Ρ–ΡΠ½Ρ–ΡΡ‚ΡŒ, застосування ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΌΠΎΠΆΠ΅ швидко ΠΎΠΊΡƒΠΏΠΈΡ‚ΠΈΡΡŒ Π·Π° Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ Π±Ρ–Π»ΡŒΡˆ високих Сксплуатаційних ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡ–Π² Ρ– Ρ‚Ρ€ΠΈΠ²Π°Π»ΠΎΠ³ΠΎ Ρ‚Π΅Ρ€ΠΌΡ–Π½Ρƒ слуТби. Π”ΠΎ Ρ‚ΠΎΠ³ΠΎ ΠΆ, пСрспСктивним направлСнням Ρƒ ΠΏΠΎΠ΄ΠΎΠ»Π°Π½Π½Ρ– Ρ†ΠΈΡ… Π½Π΅Π΄ΠΎΠ»Ρ–ΠΊΡ–Π² Ρ” фабрикація Π΄Π΅ΡˆΠ΅Π²ΠΈΡ… Ρ‚Π° високо Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΡ… ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Π· використанням Π½Π°Π½ΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–ΠΉ, ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— Ρ—Ρ… ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– ΠΏΡ€ΠΎΡ‚ΠΈ біообростання Ρ‚Π° Π· ΠΌΠ΅Ρ‚ΠΎΡŽ знСзараТСння Ρ‚Π° створСння Π³Ρ–Π±Ρ€ΠΈΠ΄Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½. Π”ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΎ крСслСно пСрспСктивний напрямок створСння ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Π½Π° основі Π½ΠΈΠ·ΡŒΠΊΠΎΠ²Π°Ρ€Ρ‚Ρ–ΡΠ½ΠΎΡ— сировини Ρ‚Π° Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° Π΄Π΅ΡˆΠ΅Π²ΠΈΡ… Π°Π½Ρ–Π·ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΈΡ… Π½Π΅ΠΎΡ€Π³Π°Π½Ρ–Ρ‡Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½. Π’ Ρ†Ρ–Π»ΠΎΠΌΡƒ Π·Π°Π·Π½Π°Ρ‡Π°Ρ”Ρ‚ΡŒΡΡ, Ρ‰ΠΎ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ– Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ— ΠΏΡ€ΠΈ усунСнні ΠΏΠ΅Π²Π½ΠΈΡ… Π½Π΅Π΄ΠΎΠ»Ρ–ΠΊΡ–Π² Π±ΡƒΠ΄ΡƒΡ‚ΡŒ Π²ΠΈΠ·Π½Π°Π½Ρ– ΡƒΠ½Ρ–Π²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΈΠΌ Ρ‚Π° Β«Π·Π΅Π»Π΅Π½ΠΈΠΌΒ» ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ очищСння стічних Π²ΠΎΠ΄, який Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ΡŒ Π²ΠΈΡ€Ρ–ΡˆΡƒΠ²Π°Ρ‚ΠΈ Π²Π΅Π»ΠΈΠΊΠ΅ ΠΊΠΎΠ»ΠΎ ΠΏΠΈΡ‚Π°Π½ΡŒ Π²ΠΎΠ΄ΠΎΠΏΡ–Π΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ.This review is devoted to the features of the formation and application of ceramic membranes in water treatment technologies. The structure, composition and geometric configuration of ceramic membranes were analyzed. A comparison with polymer membranes was made, as a result of which it was determined that the use of ceramic membranes is safer for the environment and will contribute to the creation of sustainable water treatment technologies, which can be completely closed. Despite their widely recognized shortcomings – fragility and cost, the use of ceramic membranes can pay off quickly due to higher performance and longer service life. Besides, a promising direction in overcoming these shortcomings is the fabrication of cheap and highly functional ceramic membranes using nanotechnology, modification of their surface against biofouling and for disinfection and creation of hybrid membranes. Additionally, the perspective direction of ceramic membranes creation based on low-cost raw materials and the development of cheap anisotropic inorganic membranes is outlined. In general, it is noted that membrane technologies, while eliminating certain shortcomings, will be recognized as a universal and "green" method of wastewater treatment, which will address a wide range of water treatment issues
    corecore