12 research outputs found
Radiological Mapping of Post-disaster Nuclear Environments Using Fixed-wing Unmanned Aerial Systems:A Study from Chernobyl
In the immediate aftermath following a large-scale release of radioactive material into the environment, it is necessary to determine the spatial distribution of radioactivity quickly. At present, this is conducted by utilizing manned aircraft equipped with large-volume radiation detection systems. Whilst these are capable of mapping large areas quickly, they suffer from a low spatial resolution due to the operating altitude of the aircraft. They are also expensive to deploy and their manned nature means that the operators are still at risk of exposure to potentially harmful ionizing radiation. Previous studies have identified the feasibility of utilizing unmanned aerial systems (UASs) in monitoring radiation in post-disaster environments. However, the majority of these systems suffer from a limited range or are too heavy to be easily integrated into regulatory restrictions that exist on the deployment of UASs worldwide. This study presents a new radiation mapping UAS based on a lightweight (8 kg) fixed-wing unmanned aircraft and tests its suitability to mapping post-disaster radiation in the Chornobyl Exclusion Zone (CEZ). The system is capable of continuous flight for more than 1 h and can resolve small scale changes in dose-rate in high resolution (sub-20 m). It is envisaged that with some minor development, these systems could be utilized to map large areas of hazardous land without exposing a single operator to a harmful dose of ionizing radiation
Determination of Characteristic vs Anomalous 135Cs/137Cs Isotopic Ratios in Radioactively Contaminated Environmental Samples
A contamination with the ubiquitous radioactive fission product 137Cs cannot be assigned per se to its source. We used environmental samples with varying contamination levels from various parts of the world to establish their characteristic 135Cs/137Cs isotope ratios and thereby allow their distinction. The samples included biological materials from Chernobyl and Fukushima, historic ashed human lung tissue from the 1960s from Austria, and trinitite from the Trinity Test Site, USA. After chemical separation and gas reaction shifts inside a triple quadrupole ICP mass spectrometer, characteristic 135Cs/137Cs isotope signatures (all as per March 11, 2011) were obtained for Fukushima- (μ0.35) and Chernobyl-derived (μ0.50) contaminations, in agreement with the literature for these contamination sources. Both signatures clearly distinguish from the characteristic high ratio (1.9 ± 0.2) for nuclear-weapon-produced radiocesium found in human lung tissue. Trinitite samples exhibited an unexpected, anomalous pattern by displaying a low (<0.4) and nonuniform 135Cs/137Cs ratio. This exemplifies a 137Cs-rich fractionation of the plume in a nuclear explosion, where 137Cs is a predominant species in the fireball. The onset of 135Cs was delayed because of the longer half-life of its parent nuclide 135Xe, causing a spatial separation of gaseous 135Xe from condensed 137Cs, which is the reason for the atypical 135Cs/137Cs fractionation in the fallout at the test site
Wildfires in the Chornobyl exclusion zone – risks and consequences
Following the 1986 Chornobyl accident an area of approaching 5000 km2 surrounding the nuclear plant was abandoned, creating the Chornobyl Exclusion Zone (CEZ). Whilst this area likely contains the most radioactive terrestrial ecosystem on earth, over the nearly 35 years since the accident the absence of humans and associated activities has resulted in increases in wildlife numbers. Both the Belarussian and Ukrainian components of the CEZ are now designated as nature reserves; together they form one of Europe's largest protected areas and have been described as an iconic example of rewilding. Forests and former agricultural land (now scrub) dominate the CEZ and wildfires are an annual event. In April 2020, the CEZ suffered its most widespread fires to date when >800 km2 of the 2600 km2 Ukrainian portion of the CEZ was burnt. Largescale fires in the CEZ have implications for wildlife, as they do elsewhere, but they also pose additional radioecological and radiological protection questions. We discuss the implications of wildfires in the CEZ, considering effects on wildlife and changes in radionuclide mobility. We also demonstrate that the risk to firefighters and the wider public from the inhalation of radionuclides in smoke resulting from fires in the CEZ is likely to be low. However, further experimental and modelling work to evaluate potential doses to firefighters from inhaled radioactive particles would be valuable, not least for reassurance purposes
Device for caring for houseplants on the arduino
Language Reference of Arduino [Електронний ресурс]. – Режим доступу:
https://www.arduino.cc/reference/en/
2.ESP8266 Arduino Core’s documentation [Електронний ресурс]. – Режим доступу:
https://arduino-esp8266.readthedocs.io/en/latest/
3. Mini-Tech [Електронний ресурс]. – Режим доступу: https://www.minitech.com.ua/
4.Студентське конструкторське бюро "Sky" при кафедрі електроніки,
робототехніки і технологій моніторингу та інтернету речей [Електронний ресурс]. –
Режим доступу: http://kafelec.nau.edu.ua/Student%20Design%20Office%20Sky.htmlКожна рослина потребує догляду, але інколи ми можемо забути про те що потрібно її поливати. Розроблений нами пристрій, може допомогти вам у догляді за рослиною, нагадуючи про те що її треба полити та тримати в комфортних умовах. В майбутніх розробках цей пристрій буде відслідковувати стан рослини, чи вистачає їй сонця, чи комфортна температура для рослини, чи вистачає рослині вологи, і т.д. Якщо одне з перелічених не буде відповідати нормі, пристрій вам про це повідомить. Також буде реалізований автополив.Every plant needs care, but sometimes we can forget about that it needs to be watered. The device we developed can help you in care of the plant, reminding that it should be watered and kept in comfortable conditions. In future developments, this device will monitor the condition of the plant, whether it has enough sun, whether a comfortable temperature for the plant, whether it is enough plant moisture, etc. If one of these does not meet the norm, the device notifies you. Auto-watering will also be implemented
Reconstruction of the Long-Term Dynamics of Particulate Concentrations and Solid–Liquid Distribution of Radiocesium in Three Severely Contaminated Water Bodies of the Chernobyl Exclusion Zone Based on Current Depth Distribution in Bottom Sediments
Given the importance of understanding long-term dynamics of radionuclides in the environment in general, and major gaps in the knowledge of 137Cs particulate forms in Chernobyl exclusion zone water bodies, three heavily contaminated water bodies (Lakes Glubokoe, Azbuchin, and Chernobyl NPP Cooling Pond) were studied to reconstruct time changes in particulate concentrations of 137Cs and its apparent distribution coefficient Kd, based on 137Cs depth distributions in bottom sediments. Bottom sediment cores collected from deep-water sites of the above water bodies were sliced into 2 cm layers to obtain 137Cs vertical profile. Assuming negligible sediment mixing and allowing for 137Cs strong binding to sediment, each layer of the core was attributed to a specific year of profile formation. Using this method, temporal trends for particulate 137Cs concentrations in the studied water bodies were derived for the first time and they were generally consistent with the semiempirical diffusional model. Based on the back-calculated particulate 137Cs concentrations, and the available long-term monitoring data for dissolved 137Cs, the dynamics of 137Cs solid–liquid distribution were reconstructed. Importantly, just a single sediment core collected from a lake or pond many years after a nuclear accident seems to be sufficient to retrieve long-term dynamics of contamination
Application of a tuning-free burned area detection algorithm to the Chornobyl wildfires in 2022
Abstract The wildfires in the Chornobyl Exclusion Zone (ChEZ) have caused widespread public concern about the potential risk of radiation exposure from radionuclides resuspended and redistributed due to the fires in 2020. The wildfires were also confirmed in ChEZ in the spring of 2022, and its impact needed to be estimated accurately and rapidly. In this study, we developed a tuning-free burned area detection algorithm (TuFda) to perform rapid detection of burned areas for the purpose of immediate post-fire assessment. We applied TuFda to detect burned areas in the ChEZ during the spring of 2022. The size of the burned areas in February and March was estimated as 0.4 km2 and 70 km2, respectively. We also applied the algorithm to other areas outside the boundaries of the ChEZ and detected land surface changes totaling 553 km2 in northern Ukraine between February and March 2022. These changes may have occurred as a result of the Russian invasion. This study is the first to identify areas in northern Ukraine impacted by both wildfires and the Russian invasion of Ukraine in 2022. Our algorithm facilitates the rapid provision of accurate information on significant land surface changes whether caused by wildfires, military action, or any other factor
Reconstruction of the Long-Term Dynamics of Particulate Concentrations and Solid–Liquid Distribution of Radiocesium in Three Severely Contaminated Water Bodies of the Chernobyl Exclusion Zone Based on Current Depth Distribution in Bottom Sediments
Given the importance of understanding long-term dynamics of radionuclides in the environment in general, and major gaps in the knowledge of 137Cs particulate forms in Chernobyl exclusion zone water bodies, three heavily contaminated water bodies (Lakes Glubokoe, Azbuchin, and Chernobyl NPP Cooling Pond) were studied to reconstruct time changes in particulate concentrations of 137Cs and its apparent distribution coefficient Kd, based on 137Cs depth distributions in bottom sediments. Bottom sediment cores collected from deep-water sites of the above water bodies were sliced into 2 cm layers to obtain 137Cs vertical profile. Assuming negligible sediment mixing and allowing for 137Cs strong binding to sediment, each layer of the core was attributed to a specific year of profile formation. Using this method, temporal trends for particulate 137Cs concentrations in the studied water bodies were derived for the first time and they were generally consistent with the semiempirical diffusional model. Based on the back-calculated particulate 137Cs concentrations, and the available long-term monitoring data for dissolved 137Cs, the dynamics of 137Cs solid–liquid distribution were reconstructed. Importantly, just a single sediment core collected from a lake or pond many years after a nuclear accident seems to be sufficient to retrieve long-term dynamics of contamination
Modelling of the Fate of <sup>137</sup>Cs and <sup>90</sup>Sr in the Chornobyl Nuclear Power Plant Cooling Pond before and after the Water Level Drawdown
During the accident in April 1986, the Cooling Pond (CP) of the Chornobyl Nuclear Power Plant (ChNPP) was heavily contaminated by fuel particles and radionuclides of cesium-137 (137Cs) and strontium-90 (90Sr). Starting from the end of 2014, a gradual decrease of the CP water level began leading to the transformation of the whole reservoir into eight separate sectors and raising the concern of the fate of 137Cs and 90Sr in the future. In this study, two mathematical models were applied to reproduce radioactive contamination of the CP from 1986 to 2021 and to provide a forecast of 137Cs and 90Sr concentrations in the CP water from 2022 to 2030. The hydrodynamic model THREETOX provided three-dimensional (3D) currents in the CP corresponding to hydrological conditions before and after water level drawdown, and these currents were used in the box model POSEIDON-F for the long-term simulations of the changes in 137Cs and 90Sr concentrations in water, bottom sediments, and biota. Seasonal changes in the distribution coefficient (Kd) describing the partition of 137Cs between water and sediments were considered in the box model, which allowed us to reproduce the observed variations of concentration. Calculated concentrations of 137Cs and 90Sr in water and freshwater fish occupying different trophic levels agreed well with measurements for the entire post-accident period. After the water level drawdown, concentrations of 137Cs in the CP water slightly increased in all eight sectors, while 90Sr concentrations significantly increased in sectors close to ChNPP, which was explained by an additional 90Sr source when comparing the simulation results and measurement data. Using the model forecast from 2022 to 2030, we predict that the concentration of both radionuclides will gradually decrease in new water bodies of the Cooling Pond except in the northern sectors, where the suggested additional source of 90Sr will lead to a stabilization of 90Sr concentrations