15 research outputs found

    Human 3D cellular model of hypoxic brain injury of prematurity.

    Get PDF
    Owing to recent medical and technological advances in neonatal care, infants born extremely premature have increased survival rates1,2. After birth, these infants are at high risk of hypoxic episodes because of lung immaturity, hypotension and lack of cerebral-flow regulation, and can develop a severe condition called encephalopathy of prematurity3. Over 80% of infants born before post-conception week 25 have moderate-to-severe long-term neurodevelopmental impairments4. The susceptible cell types in the cerebral cortex and the molecular mechanisms underlying associated gray-matter defects in premature infants remain unknown. Here we used human three-dimensional brain-region-specific organoids to study the effect of oxygen deprivation on corticogenesis. We identified specific defects in intermediate progenitors, a cortical cell type associated with the expansion of the human cerebral cortex, and showed that these are related to the unfolded protein response and changes. Moreover, we verified these findings in human primary cortical tissue and demonstrated that a small-molecule modulator of the unfolded protein response pathway can prevent the reduction in intermediate progenitors following hypoxia. We anticipate that this human cellular platform will be valuable for studying the environmental and genetic factors underlying injury in the developing human brain

    The hidden biology of the human brain

    No full text

    Spatially controlled construction of assembloids using bioprinting

    No full text
    Abstract The biofabrication of three-dimensional (3D) tissues that recapitulate organ-specific architecture and function would benefit from temporal and spatial control of cell-cell interactions. Bioprinting, while potentially capable of achieving such control, is poorly suited to organoids with conserved cytoarchitectures that are susceptible to plastic deformation. Here, we develop a platform, termed Spatially Patterned Organoid Transfer (SPOT), consisting of an iron-oxide nanoparticle laden hydrogel and magnetized 3D printer to enable the controlled lifting, transport, and deposition of organoids. We identify cellulose nanofibers as both an ideal biomaterial for encasing organoids with magnetic nanoparticles and a shear-thinning, self-healing support hydrogel for maintaining the spatial positioning of organoids to facilitate the generation of assembloids. We leverage SPOT to create precisely arranged assembloids composed of human pluripotent stem cell-derived neural organoids and patient-derived glioma organoids. In doing so, we demonstrate the potential for the SPOT platform to construct assembloids which recapitulate key developmental processes and disease etiologies

    Long-term maturation of human cortical organoids matches key early postnatal transitions.

    No full text
    Human stem-cell-derived models provide the promise of accelerating our understanding of brain disorders, but not knowing whether they possess the ability to mature beyond mid- to late-fetal stages potentially limits their utility. We leveraged a directed differentiation protocol to comprehensively assess maturation in vitro. Based on genome-wide analysis of the epigenetic clock and transcriptomics, as well as RNA editing, we observe that three-dimensional human cortical organoids reach postnatal stages between 250 and 300 days, a timeline paralleling in vivo development. We demonstrate the presence of several known developmental milestones, including switches in the histone deacetylase complex and NMDA receptor subunits, which we confirm at the protein and physiological levels. These results suggest that important components of an intrinsic in vivo developmental program persist in vitro. We further map neurodevelopmental and neurodegenerative disease risk genes onto in vitro gene expression trajectories to provide a resource and webtool (Gene Expression in Cortical Organoids, GECO) to guide disease modeling

    The CD22-IGF2R interaction is a therapeutic target for microglial lysosome dysfunction in Niemann-Pick type C

    No full text
    Lysosome dysfunction is a shared feature of rare lysosomal storage diseases and common age-related neurodegenerative diseases. Microglia, the brain-resident macrophages, are particularly vulnerable to lysosome dysfunction because of the phagocytic stress of clearing dying neurons, myelin, and debris. CD22 is a negative regulator of microglial homeostasis in the aging mouse brain, and soluble CD22 (sCD22) is increased in the cerebrospinal fluid of patients with Niemann-Pick type C disease (NPC). However, the role of CD22 in the human brain remains unknown. In contrast to previous findings in mice, here, we show that CD22 is expressed by oligodendrocytes in the human brain and binds to sialic acid–dependent ligands on microglia. Using unbiased genetic and proteomic screens, we identify insulin-like growth factor 2 receptor (IGF2R) as the binding partner of sCD22 on human myeloid cells. Targeted truncation of IGF2R revealed that sCD22 docks near critical mannose 6-phosphate–binding domains, where it disrupts lysosomal protein trafficking. Interfering with the sCD22-IGF2R interaction using CD22 blocking antibodies ameliorated lysosome dysfunction in human NPC1 mutant induced pluripotent stem cell–derived microglia-like cells without harming oligodendrocytes in vitro. These findings reinforce the differences between mouse and human microglia and provide a candidate microglia-directed immunotherapeutic to treat NPC

    An integrated transcriptomic cell atlas of human neural organoids

    No full text
    Neural tissues generated from human pluripotent stem cells in vitro (known as neural organoids) are becoming useful tools to study human brain development, evolution and disease. The characterization of neural organoids using single-cell genomic methods has revealed a large diversity of neural cell types with molecular signatures similar to those observed in primary human brain tissue. However, it is unclear which domains of the human nervous system are covered by existing protocols. It is also difficult to quantitatively assess variation between protocols and the specific cell states in organoids as compared to primary counterparts. Single-cell transcriptome data from primary tissue and neural organoids derived with guided or un-guided approaches and under diverse conditions combined with large-scale integrative analyses make it now possible to address these challenges. Recent advances in computational methodology enable the generation of integrated atlases across many data sets. Here, we integrated 36 single-cell transcriptomics data sets spanning 26 protocols into one integrated human neural organoid cell atlas (HNOCA) totaling over 1.7 million cells. We harmonize cell type annotations by incorporating reference data sets from the developing human brain. By mapping to the developing human brain reference, we reveal which primary cell states have been generated in vitro, and which are under-represented. We further compare transcriptomic profiles of neuronal populations in organoids to their counterparts in the developing human brain. To support rapid organoid phenotyping and quantitative assessment of new protocols, we provide a programmatic interface to browse the atlas and query new data sets, and showcase the power of the atlas to annotate new query data sets and evaluate new organoid protocols. Taken together, the HNOCA will be useful to assess the fidelity of organoids, characterize perturbed and diseased states and facilitate protocol development in the future
    corecore