141 research outputs found

    The influence of nanofluid PH on natural convection

    Get PDF
    The vast majority of experimental studies of nanofluids under natural convection have shown that the heat transfer rate decreases in contrast to observations of increased heat transfer rate for forced convection and boiling heat transfer. This surprising result has not been fully understood and the purpose of this study is to shed light on the physics behind the decrease of heat transfer in Al 2 O 3 – deionised (DI) H 2 O nanofluids under natural convection. A classical Rayleigh-Benard configuration has been employed, where the test medium is heated from the bottom and cooled from the top of an optically accessible chamber, while the sidewalls are insulated. Al 2 O 3 – H 2 O nanofluids with nanoparticle concentration within the range of 0.03 to 0.12 vol. % are used and tested under turbulent natural convection, Rayleigh number Ra ~ 10 9 , until steady state conditions are reached. For the synthesis of the nanofluid, pure DI water and high purity nanopowder, supplied by two different vendors, are involved with and without adopting the electrostatic stabilization method. The temperature measurements at different locations around the chamber allow the quantification of the natural convection heat transfer coefficient and the corresponding Nusselt and Rayleigh numbers. All the measured quantities are compared with those for DI water that serves as a benchmark in this study. It is found that the presence of nanoparticles systematically decreases the heat transfer performance of the base fluid under natural convection. An explanation for the reported degradation can be attributed to the buoyant and gravitational forces acting in the system that appear to be inadequate to ensure or maintain good nanofluid mixing. The results also show that as the nanoparticle concentration increases, the temperature of the heating plate increases, suggesting the presence of an additional thermal barrier imposed at the hot plate of the chamber. This can be attributed to the formation of a stationary thin layer structure of nanoparticles and liquid close to the heating plate that is qualitatively observed to increase in thickness as the nanoparticle concentration increases. The addition of a small amount of acetic acid to control the pH value of the nanofluid reduces the thickness of the thin layer structure close to the hot plate, leading to reduction of the rate of heat transfer decrease . A similar behaviour is observed when a different nanopowder that forms an acidic suspension is used. This behaviour is credited to the significantly increased nanofluid stability attained through the electrostatic stabilization method. Such a method takes advantage of the repulsive forces imposed due to the electric double layers that surround individual nanoparticles. The understanding of the influence of the nanofluid pH on the stability of nanosuspensions and its impact on heat transfer rate can lead to future guidelines for the effective use of nanofluids

    Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    Get PDF
    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids

    Large-scale solar wind flow around Saturn's nonaxisymmetric magnetosphere

    Get PDF
    The interaction between the solar wind and a magnetosphere is fundamental to the dynamics of a planetary system. Here, we address fundamental questions on the large-scale magnetosheath flow around Saturn using a 3D magnetohydrodynamic (MHD) simulation. We find Saturn's polar-flattened magnetosphere to channel ~20% more flow over the poles than around the flanks at the terminator. Further, we decompose the MHD forces responsible for accelerating the magnetosheath plasma to find the plasma pressure gradient as the dominant driver. This is by virtue of a high-beta magnetosheath, and in turn, the high-MA bow shock. Together with long-term magnetosheath data by the Cassini spacecraft, we present evidence of how nonaxisymmetry substantially alters the conditions further downstream at the magnetopause, crucial for understanding solar wind-magnetosphere interactions such as reconnection and shear flow-driven instabilities. We anticipate our results to provide a more accurate insight into the global conditions upstream of Saturn and the outer planets.Comment: Accepted for publication in Journal of Geophysical Journal: Space Physic

    Isothermal velocity measurements in two HyperVapotron geometries using Particle Image Velocimetry (PIV)

    Get PDF
    AbstractHyperVapotron beam stopping elements are high heat flux devices able to transfer large amounts of heat (of the order of 10–20MW/m2) efficiently and reliably making them strong candidates as plasma facing components for future nuclear fusion reactors or other applications where high heat flux transfer is required. They employ the Vapotron effect, a two phase complex heat transfer mechanism. The physics of operation of the device are not well understood and are believed to be strongly linked to the evolution of the flow fields of coolant flowing inside the grooves that form part of the design. An experimental study of the spatial and temporal behaviour of the flow field under isothermal conditions has been carried out on two replicas of HyperVapotron geometries taken from the Mega Amp Spherical Tokamak (MAST) and the Joint European Torus (JET) experiments. The models were tested under three isothermal operating conditions to collect coolant flow data and assess how the design and operational conditions might affect the thermal performance of the devices for single phase heat transfer. It was discovered that the in-groove speeds of MAST are lower and the flow structures less stable but less sensitive to free stream speed perturbations compared to the JET geometry. The MAST geometry was found to suffer from hydrodynamic end effects. A wake formation was discovered at the top of the groove entrance for the JET geometry, while this is absent from the MAST geometry. The wake does not affect significantly the mean operation of the device but it may affect the coolant pumping load of the device. For the JET variant, there is evidence that the typical operation with free stream flow speed of 6m/s is advantageous

    Bubble growth and departure from an artificial cavity during flow boiling

    Get PDF
    Wall nucleation research has mainly focused on natural surface nucleation sites whose geometry is unknown and the effects of nucleation cavity geometry and size on flow boiling are not clear. The current research studies the effect of a blind hole with diameter 200 μm and depth 1 mm on bubble nucleation in a channel with water flow boiling. The boundary conditions were constant heat flux of 18.8 kW/m2, wall superheat of 8.7°C, water inlet temperature of 93.8°C and uniform velocity profile of 0.21 m/s at the inlet of the channel with cross-section of 30 mm x 10 mm, leading to a Reynolds number of 10038. High-speed imaging of the bubble behavior allowed the measurement of the bubble temporal and spatial evolution and quantified the bubble growth period and waiting period between departure and new growth and associated fluctuations. The bubble growth period reaches up to 40 seconds with a corresponding waiting time of 0.9 ms. It is observed that a wave front is induced by the breakage of the bubble neck which propagates through the bubble, resulting in distortions that serve as initial trigger of bubble movement along the nucleation wall

    Sedimentation in nanofluids during a natural convection experiment

    No full text
    This study presents an experimental investigation of the thermophysical behavior of γ-Al2O3–deionized (DI) H2O nanofluid under natural convection in the classical Rayleigh–Benard configuration, which consists of a cubic cell with conductive bottom and top plates, insulated sidewalls and optical access. The presence of nanoparticles either in stationary liquids or in flows affects the physical properties of the host fluids as well as the mechanisms and rate of heat and mass transfer. In the present work, measurements of heat transfer performance and thermophysical properties of Al2O3–H2O nanofluids, with nanoparticle concentration within the range of 0.01–0.12 vol.%, are compared to those for pure DI water that serves as a benchmark. The natural convective chamber induces thermal instability in the vertical direction in the test medium by heating the medium from below and cooling it from above. Fixed heat flux at the bottom hot plate and constant temperature at the top cold plate are the imposed boundary conditions. The Al2O3–H2O nanofluid is tested under different boundary conditions and various nanoparticle concentrations until steady state conditions are reached. It is found that while the Rayleigh number, Ra, increases with increasing nanoparticle concentration, the convective heat transfer coefficient and Nusselt number, Nu, decrease. This finding implies that the addition of Al2O3 nanoparticles deteriorates the heat transfer performance due to natural convection of the base fluid, mainly due to poor nanofluid stability. Also, as the nanoparticle concentration increases the temperature at the heating plate increases, suggesting fouling at the bottom surface; a stationary thin layer structure of nanoparticles and liquid seems to be formed close to the heating plate that is qualitatively observed to increase in thickness as the nanoparticle concentration increases. This layer structure imposes additional thermal insulation in the system and thus appears to be responsible in a big extend for the reported heat transfer degradation. Also, for relatively high nanoparticle concentrations of 0.06 and 0.12 vol.%, as the heating flux increases the rate of heat transfer deterioration increases. Specifically in the case of maximum nanoparticle concentration, 0.12 vol.%, when the turbulence intensity increases, by increasing the applied heat flux, the Nusselt number remains constant in comparison with lower nanoparticle concentrations. This behavior can be attributed mainly to the physical properties of the Al2O3 nanopowder used in this study and the resulting interactions between the heating plate and the nanoparticles

    Assessing the flow characteristics of nanofluids during turbulent natural convection

    Get PDF
    High-performance cooling is of vital importance for the cutting-edge technology of today, from nanoelectronic mechanical systems to nuclear reactors. Advances in nanotechnology have allowed the development of a new category of coolants, termed nanofluids that have the potential to enhance the thermal performance of conventional heat transfer fluids. At the present time, nanofluids are a controversial research theme, since there is yet no conclusive answer to explain the underlying physical mechanisms of heat transfer. The current study investigates experimentally the heat and mass transfer behaviour of dilute Al2O3–H2O nanofluids under turbulent natural convection—Rayleigh number of the order of 109—in a cubic Rayleigh–Bénard cell with optical access. Traditional heat transfer measurements were combined with a velocimetry method to obtain a deeper understanding of the impact of nanoparticles on the heat transfer performance of the base fluid. Particle image velocimetry was employed to quantify the resulting mean velocity field and flow structures in dilute nanofluids under natural convection, at three parallel planes inside the cubic cell. All the results were compared with that for the base fluid, i.e. deionised water. It was observed that the presence of a minute amount of Al2O3 nanoparticles in deionised water, φv = 0.00026 vol.%, considerably modifies the mass transfer behaviour of the fluid in the bulk region of turbulent Rayleigh–Bénard convection. Simultaneously, the general heat transport, as expressed by the Nusselt number, remained unaffected within the experimental uncertainty

    Flow Characteristics in HyperVapotron Elements Operating with Nanofluids

    Get PDF
    HyperVapotrons are highly robust and efficient heat exchangers able to transfer high heat fluxes of the order of 10-20MW/m2. They employ the Vapotron effect, a complex two phase heat transfer mechanism, which is strongly linked to the hydrodynamic structures present in the coolant flow inside the devices. HyperVapotrons are currently tested in the Joined European Torus (JET) and the Mega Amp Spherical Tokamak (MAST) fusion experiments and are considered a strong candidate for the International Thermonuclear Experimental Reactor (ITER). The efficiency of heat transfer and the reliability of the components of a fusion power plant are important factors to ensure its longevity and economical sustainability. Optimisation of the heat transfer performance of these devices by the use of nanofluids is investigated in this paper. Nanofluids are advanced two phase coolants that exhibit heat transfer augmentation phenomena. A cold isothermal nanofluid flow is established inside two HyperVapotron models representing the geometries used at JET and MAST. A hybrid particle image velocimetry method is then employed to map in high spatial resolution (30μm) the flow fields inside each replica. The instantaneous and mean flow structures of a nanofluid are compared to those present during the use of a traditional coolant (water) in order to detect any departure from the hydrodynamic design operational regime of the device. It was discovered that the flow field of the JET model is considerably affected when using nanofluids, while the flow in the MAST geometry does not change significantly by the introduction of nanofluids. Evidence of a shear thinning mechanism is found inside the momentum boundary layer of the nanofluid flows and it might be important to calculating the pumping power losses of a functional nuclear fusion power plant cooling system ran with nanofluids instead of water. This work is a continuation of a previous study on HyperVapotrons and nanofluids, as documented by [1-3]

    Suprathermal electrons at Saturn's bow shock

    Get PDF
    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with theory in which the "injection" of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ~1 MeV).Comment: 22 pages, 5 figures. Accepted for publication in Ap

    Decarbonising building heating and cooling: designing a novel, inter-seasonal latent heat storage system

    Get PDF
    The global heating and cooling demands have increased to mitigate the effects of the rise in extreme weather events due to climate change. This has led to an increase in global greenhouse gas emissions due to the use of fossil fuels to meet these demands. The current study evaluates how an alternative low-carbon heating and cooling system may provide thermal comfort in residential buildings, specifically in regions that have a humid temperature oceanic climate- for example, the United Kingdom. To meet the net-zero emissions targets set in the United Kingdom by 2050, greenhouse gas emissions generated from heating in residential buildings must fall by 95%. The leading decarbonisation strategy proposed by their government requires the electrification of the heating system through the installation of heat pumps. Consequently, the average electricity consumption per household is expected to increase. This will impose considerable pressure on electricity networks to source additional (ideally renewable) capacity, which will ultimately be costly. To circumvent this issue, the current study proposes a novel alternative method of providing nearly zero-carbon space and water heating, that can operate almost independently of the electricity grid. This requires the use of solar energy as the thermal energy source, and a solid-liquid phase change material as an inter-seasonal energy storage medium. A design optimisation study was thereafter carried forward to showcase the capability of such a system for a semi-detached house in London, United Kingdom
    • …
    corecore