676 research outputs found

    Extension of Wirtinger's Calculus to Reproducing Kernel Hilbert Spaces and the Complex Kernel LMS

    Full text link
    Over the last decade, kernel methods for nonlinear processing have successfully been used in the machine learning community. The primary mathematical tool employed in these methods is the notion of the Reproducing Kernel Hilbert Space. However, so far, the emphasis has been on batch techniques. It is only recently, that online techniques have been considered in the context of adaptive signal processing tasks. Moreover, these efforts have only been focussed on real valued data sequences. To the best of our knowledge, no adaptive kernel-based strategy has been developed, so far, for complex valued signals. Furthermore, although the real reproducing kernels are used in an increasing number of machine learning problems, complex kernels have not, yet, been used, in spite of their potential interest in applications that deal with complex signals, with Communications being a typical example. In this paper, we present a general framework to attack the problem of adaptive filtering of complex signals, using either real reproducing kernels, taking advantage of a technique called \textit{complexification} of real RKHSs, or complex reproducing kernels, highlighting the use of the complex gaussian kernel. In order to derive gradients of operators that need to be defined on the associated complex RKHSs, we employ the powerful tool of Wirtinger's Calculus, which has recently attracted attention in the signal processing community. To this end, in this paper, the notion of Wirtinger's calculus is extended, for the first time, to include complex RKHSs and use it to derive several realizations of the Complex Kernel Least-Mean-Square (CKLMS) algorithm. Experiments verify that the CKLMS offers significant performance improvements over several linear and nonlinear algorithms, when dealing with nonlinearities.Comment: 15 pages (double column), preprint of article accepted in IEEE Trans. Sig. Pro

    Dominating sets and ego-centered decompositions in social networks

    Full text link
    Our aim here is to address the problem of decomposing a whole network into a minimal number of ego-centered subnetworks. For this purpose, the network egos are picked out as the members of a minimum dominating set of the network. However, to find such an efficient dominating ego-centered construction, we need to be able to detect all the minimum dominating sets and to compare all the corresponding dominating ego-centered decompositions of the network. To find all the minimum dominating sets of the network, we are developing a computational heuristic, which is based on the partition of the set of nodes of a graph into three subsets, the always dominant vertices, the possible dominant vertices and the never dominant vertices, when the domination number of the network is known. To compare the ensuing dominating ego-centered decompositions of the network, we are introducing a number of structural measures that count the number of nodes and links inside and across the ego-centered subnetworks. Furthermore, we are applying the techniques of graph domination and ego=centered decomposition for six empirical social networks.Comment: 17 pages, 7 figure

    Bayesian Posterior Contraction Rates for Linear Severely Ill-posed Inverse Problems

    Get PDF
    We consider a class of linear ill-posed inverse problems arising from inversion of a compact operator with singular values which decay exponentially to zero. We adopt a Bayesian approach, assuming a Gaussian prior on the unknown function. If the observational noise is assumed to be Gaussian then this prior is conjugate to the likelihood so that the posterior distribution is also Gaussian. We study Bayesian posterior consistency in the small observational noise limit. We assume that the forward operator and the prior and noise covariance operators commute with one another. We show how, for given smoothness assumptions on the truth, the scale parameter of the prior can be adjusted to optimize the rate of posterior contraction to the truth, and we explicitly compute the logarithmic rate.Comment: 25 pages, 2 figure

    Adversarial Inpainting of Medical Image Modalities

    Full text link
    Numerous factors could lead to partial deteriorations of medical images. For example, metallic implants will lead to localized perturbations in MRI scans. This will affect further post-processing tasks such as attenuation correction in PET/MRI or radiation therapy planning. In this work, we propose the inpainting of medical images via Generative Adversarial Networks (GANs). The proposed framework incorporates two patch-based discriminator networks with additional style and perceptual losses for the inpainting of missing information in realistically detailed and contextually consistent manner. The proposed framework outperformed other natural image inpainting techniques both qualitatively and quantitatively on two different medical modalities.Comment: To be submitted to ICASSP 201

    Preamble-Based Channel Estimation for CP-OFDM and OFDM/OQAM Systems: A Comparative Study

    Full text link
    In this paper, preamble-based least squares (LS) channel estimation in OFDM systems of the QAM and offset QAM (OQAM) types is considered, in both the frequency and the time domains. The construction of optimal (in the mean squared error (MSE) sense) preambles is investigated, for both the cases of full (all tones carrying pilot symbols) and sparse (a subset of pilot tones, surrounded by nulls or data) preambles. The two OFDM systems are compared for the same transmit power, which, for cyclic prefix (CP) based OFDM/QAM, also includes the power spent for CP transmission. OFDM/OQAM, with a sparse preamble consisting of equipowered and equispaced pilots embedded in zeros, turns out to perform at least as well as CP-OFDM. Simulations results are presented that verify the analysis
    • …
    corecore