Over the last decade, kernel methods for nonlinear processing have
successfully been used in the machine learning community. The primary
mathematical tool employed in these methods is the notion of the Reproducing
Kernel Hilbert Space. However, so far, the emphasis has been on batch
techniques. It is only recently, that online techniques have been considered in
the context of adaptive signal processing tasks. Moreover, these efforts have
only been focussed on real valued data sequences. To the best of our knowledge,
no adaptive kernel-based strategy has been developed, so far, for complex
valued signals. Furthermore, although the real reproducing kernels are used in
an increasing number of machine learning problems, complex kernels have not,
yet, been used, in spite of their potential interest in applications that deal
with complex signals, with Communications being a typical example. In this
paper, we present a general framework to attack the problem of adaptive
filtering of complex signals, using either real reproducing kernels, taking
advantage of a technique called \textit{complexification} of real RKHSs, or
complex reproducing kernels, highlighting the use of the complex gaussian
kernel. In order to derive gradients of operators that need to be defined on
the associated complex RKHSs, we employ the powerful tool of Wirtinger's
Calculus, which has recently attracted attention in the signal processing
community. To this end, in this paper, the notion of Wirtinger's calculus is
extended, for the first time, to include complex RKHSs and use it to derive
several realizations of the Complex Kernel Least-Mean-Square (CKLMS) algorithm.
Experiments verify that the CKLMS offers significant performance improvements
over several linear and nonlinear algorithms, when dealing with nonlinearities.Comment: 15 pages (double column), preprint of article accepted in IEEE Trans.
Sig. Pro