2 research outputs found

    Arsenate and Selenate Scavenging by Basaluminite: Insights into the Reactivity of Aluminum Phases in Acid Mine Drainage

    No full text
    Basaluminite precipitation may play an important role in the behavior of trace elements in water and sediments affected by acid mine drainage and acid sulfate soils. In this study, the affinity of basaluminite and schwertmannite for arsenate and selenate is compared, and the coordination geometries of these oxyanions in both structures are reported. Batch isotherm experiments were conducted to examine the sorption capacity of synthetic schwertmannite and basaluminite and the potential competitive effect of sulfate. In addition, synchrotron-based techniques such as differential pair distribution function (d-PDF) analysis and extended X-ray absorption fine structure (EXAFS) were used to determine the local structure of AsĀ­(V) and SeĀ­(VI) complexes. The results show that oxyanion exchange with structural sulfate was the main mechanism for removal of selenate, whereas arsenate was removed by a combination of surface complexes and oxyanion exchange. The arsenate adsorption capacity of basaluminite was 2 times higher than that of schwertmannite and 3 times higher than that of selenate in both phases. The sulfate:arsenate and sulfate:selenate exchange ratios were 1:2 and 1:1, respectively. High sulfate concentrations in the solutions did not show a competitive effect on arsenate sorption capacity but had a strong impact on selenate uptake, suggesting some kind of specific interaction for arsenate. Both d-PDF and EXAFS results indicated that the bidentate binuclear inner sphere was the most probable type of ligand for arsenate on both phases and for selenate on schwertmannite, whereas selenate forms outer-sphere complexes in the aluminum octahedral interlayer of basaluminite. Overall, these results show a strong affinity of poorly crystalline aluminum phases such as basaluminite for AsĀ­(V) and SeĀ­(VI) oxyanions, with adsorption capacities on the same order of magnitude as those of iron oxides. The results obtained in this study are relevant to the understanding of trace element behavior in environments affected by acid water, potentially opening new research lines focused on remediation by natural attenuation processes or engineered water treatment systems

    Recovery of Rare Earth Elements and Yttrium from Passive-Remediation Systems of Acid Mine Drainage

    No full text
    Rare earth elements and yttrium (REY) are raw materials of increasing importance for modern technologies, and finding new sources has become a pressing need. Acid mine drainage (AMD) is commonly considered an environmental pollution issue. However, REY concentrations in AMD can be several orders of magnitude higher than in naturally occurring water bodies. With respect to shale standards, the REY distribution pattern in AMD is enriched in intermediate and valuable REY, such as Tb and Dy. The objective of the present work is to study the behavior of REY in AMD passive-remediation systems. Traditional AMD passive remediation systems are based on the reaction of AMD with calcite-based permeable substrates followed by decantation ponds. Experiments with two columns simulating AMD treatment demonstrate that schwertmannite does not accumulate REY, which, instead, are retained in the basaluminite residue. The same observation is made in two field-scale treatments from the Iberian Pyrite Belt (IPB, southwest Spain). On the basis of the amplitude of this process and on the extent of the IPB, our findings suggest that the proposed AMD remediation process can represent a modest but suitable REY source. In this sense, the IPB could function as a giant heap-leaching process of regional scale in which rain and oxygen act as natural driving forces with no energy investment. In addition to having environmental benefits of its treatment, AMD is expected to last for hundreds of years, and therefore, the total reserves are practically unlimited
    corecore