15 research outputs found

    Dual-Color Electroluminescence from Dot-in-Bulk Nanocrystals

    No full text
    The emission color from colloidal semiconductor nanocrystals (NCs) is usually tuned through control of particle size, while multicolor emission is obtained by mixing NCs of different sizes within an emissive layer. Here, we demonstrate that recently introduced “dot-in-bulk” (DiB) nanocrystals can emit two-color light under both optical excitation and electrical injection. We show that the effective emission color can be controlled by adjusting the relative amplitudes of the core and shell emission bands via the intensity of optical excitation or applied bias in the cases of photoluminescence (PL) and electroluminescence (EL), respectively. To investigate the role of nonradiative carrier losses due to trapping at intragap states, we incorporate DiB NCs into functional light-emitting diodes and study their PL as a function of applied bias below the EL excitation threshold. We show that voltage-dependent changes in core and shell emissions are not due to the applied electric field but rather arise from the transfer of charges between the anode and the NC intragap trap sites. The changes in the occupancy of trap states can be described in terms of the raising (lowering) of the Fermi level for reverse (direct) bias. We find that the applied voltage affects the overall PL intensity primarily via the electron-trapping channel while bias-induced changes in hole-trapping play a less significant role, limited to a weak effect on core emission

    Spectro-electrochemical Probing of Intrinsic and Extrinsic Processes in Exciton Recombination in I–III–VI<sub>2</sub> Nanocrystals

    No full text
    Ternary CuInS<sub>2</sub> nanocrystals (CIS NCs) are attracting attention as nontoxic alternatives to heavy metal–based chalcogenides for many technologically relevant applications. The photophysical processes underlying their emission mechanism are, however, still under debate. Here we address this problem by applying, for the first time, spectro-electrochemical methods to core-only CIS and core/shell CIS/ZnS NCs. The application of an electrochemical potential enables us to reversibly tune the NC Fermi energy and thereby control the occupancy of intragap defects involved in exciton decay. The results indicate that, in analogy to copper-doped II–VI NCs, emission occurs via radiative capture of a conduction-band electron by a hole localized on an intragap state likely associated with a Cu-related defect. We observe the increase in the emission efficiency under reductive electrochemical potential, which corresponds to raising the Fermi level, leading to progressive filling of intragap states with electrons. This indicates that the factor limiting the emission efficiency in these NCs is nonradiative electron trapping, while hole trapping is of lesser importance. This observation also suggests that the centers for radiative recombination are Cu<sup>2+</sup> defects (preexisting and/or accumulated as a result of photoconversion of Cu<sup>1+</sup> ions) as these species contain a pre-existing hole without the need for capturing a valence-band hole generated by photoexcitation. Temperature-controlled photoluminescence experiments indicate that the intrinsic limit on the emission efficiency is imposed by multiphonon nonradiative recombination of a band-edge electron and a localized hole. This process affects both shelled and unshelled CIS NCs to a similar degree, and it can be suppressed by cooling samples to below 100 K. Finally, using experimentally measured decay rates, we formulate a model that describes the electrochemical modulation of the PL efficiency in terms of the availability of intragap electron traps as well as direct injection of electrons into the NC conduction band, which activates nonradiative Auger recombination, or electrochemical conversion of the Cu<sup>2+</sup> states into the Cu<sup>1+</sup> species that are less emissive due to the need for their “activation” by the capture of photogenerated holes

    Single-Particle Ratiometric Pressure Sensing Based on “Double-Sensor” Colloidal Nanocrystals

    No full text
    Ratiometric pressure sensitive paints (<i>r</i>-PSPs) are all-optical probes for monitoring oxygen flows in the vicinity of complex or miniaturized surfaces. They typically consist of a porous binder embedding mixtures of a reference and a sensor chromophore exhibiting oxygen-insensitive and oxygen-responsive luminescence, respectively. Here, we demonstrate the first example of an <i>r</i>-PSP based on a single two-color emitter that removes limitations of <i>r</i>-PSPs based on chromophore mixtures such as different temperature dependencies of the two chromophores, cross-readout between the reference and sensor signals and phase segregation. In our approach, we utilize a novel “double-sensor” <i>r</i>-PSP that features two spectrally separated emission bands with opposite responses to the O<sub>2</sub> pressure, which boosts the sensitivity with respect to traditional reference-sensor pairs. Specifically, we use two-color-emitting dot-in-bulk CdSe/CdS core/shell nanocrystals, exhibiting red and green emission bands from their core and shell states, whose intensities are respectively enhanced and quenched in response to the increased oxygen partial pressure that effectively tunes the position of the nanocrystal’s Fermi energy. This leads to a strong and reversible ratiometric response at the single particle level and an over 100% enhancement in the pressure sensitivity. Our proof-of-concept <i>r</i>-PSPs further exhibit suppressed cross-readout thanks to zero spectral overlap between the core and shell luminescence bands and a temperature-independent ratiometric response between 0 and 70 °C

    ‘Giant’ CdSe/CdS Core/Shell Nanocrystal Quantum Dots As Efficient Electroluminescent Materials: Strong Influence of Shell Thickness on Light-Emitting Diode Performance

    No full text
    We use a simple device architecture based on a poly­(3,4-ethylendioxythiophene):poly­(styrenesulfonate) (PEDOT:PSS)-coated indium tin oxide anode and a LiF/Al cathode to assess the effects of shell thickness on the properties of light-emitting diodes (LEDs) comprising CdSe/CdS core/shell nanocrystal quantum dots (NQDs) as the emitting layer. Specifically, we are interested in determining whether LEDs based on thick-shell nanocrystals, so-called “giant” NQDs, afford enhanced performance compared to their counterparts incorporating thin-shell systems. We observe significant improvements in device performance as a function of increasing shell thickness. While the turn-on voltage remains approximately constant for all shell thicknesses (from 4 to 16 CdS monolayers), external quantum efficiency and maximum luminance are found to be about one order of magnitude higher for thicker shell nanocrystals (≄13 CdS monolayers) compared to thinner shell structures (<9 CdS monolayers). The thickest-shell nanocrystals (16 monolayers of CdS) afforded an external quantum efficiency and luminance of 0.17% and 2000 Cd/m<sup>2</sup>, respectively, with a remarkably low turn-on voltage of ∌3.0 V

    Doped Halide Perovskite Nanocrystals for Reabsorption-Free Luminescent Solar Concentrators

    No full text
    Halide perovskite nanocrystals (NCs) are promising solution-processed emitters for low-cost optoelectronics and photonics. Doping adds a degree of freedom for their design and enables us to fully decouple their absorption and emission functions. This is paramount for luminescent solar concentrators (LSCs) that enable fabrication of electrode-less solar windows for building-integrated photovoltaic applications. Here, we demonstrate the suitability of manganese-doped CsPbCl<sub>3</sub> NCs as reabsorption-free emitters for large-area LSCs. Light propagation measurements and Monte Carlo simulations indicate that the dopant emission is unaffected by reabsorption. Nanocomposite LSCs were fabricated via mass copolymerization of acrylate monomers, ensuring thermal and mechanical stability and optimal compatibility of the NCs, with fully preserved emission efficiency. As a result, perovskite LSCs behave closely to ideal devices, in which all portions of the illuminated area contribute equally to the total optical power. These results demonstrate the potential of doped perovskite NCs for LSCs, as well as for other photonic technologies relying on low-attenuation long-range optical wave guiding

    Facet-Defect Tolerant Bi-Doped Cs<sub>2</sub>Ag<sub><i>x</i></sub>Na<sub>1–<i>x</i></sub>InCl<sub>6</sub> Nanoplatelets with a Near-Unity Photoluminescence Quantum Yield

    No full text
    We report the colloidal synthesis of Bi-doped Cs2AgxNa1–xInCl6 double perovskite nanoplatelets (NPLs) exhibiting a near-unity photoluminescence quantum yield (PLQY), a record emission efficiency for nanoscale lead-free metal halides. A combination of optical spectroscopies revealed that nonradiative decay processes in the NPL were suppressed, indicating a well-passivated surface. By comparison, nanocubes with the same composition and surface ligands as the NPLs had a PLQY of only 40%. According to our calculations, the type of trap states arising from the presence of surface defects depends on their specific location: defects located on the facets of nanocubes generate only shallow traps, while those at the edges result in deep traps. In NPLs, due to their extended basal facets, most of the surface defects are facet defects. This so-called facet-defect tolerant behavior of double perovskites explains the more efficient optical emission of NPLs compared to that of nanocubes

    Facet-Defect Tolerant Bi-Doped Cs<sub>2</sub>Ag<sub><i>x</i></sub>Na<sub>1–<i>x</i></sub>InCl<sub>6</sub> Nanoplatelets with a Near-Unity Photoluminescence Quantum Yield

    No full text
    We report the colloidal synthesis of Bi-doped Cs2AgxNa1–xInCl6 double perovskite nanoplatelets (NPLs) exhibiting a near-unity photoluminescence quantum yield (PLQY), a record emission efficiency for nanoscale lead-free metal halides. A combination of optical spectroscopies revealed that nonradiative decay processes in the NPL were suppressed, indicating a well-passivated surface. By comparison, nanocubes with the same composition and surface ligands as the NPLs had a PLQY of only 40%. According to our calculations, the type of trap states arising from the presence of surface defects depends on their specific location: defects located on the facets of nanocubes generate only shallow traps, while those at the edges result in deep traps. In NPLs, due to their extended basal facets, most of the surface defects are facet defects. This so-called facet-defect tolerant behavior of double perovskites explains the more efficient optical emission of NPLs compared to that of nanocubes

    Facet-Defect Tolerant Bi-Doped Cs<sub>2</sub>Ag<sub><i>x</i></sub>Na<sub>1–<i>x</i></sub>InCl<sub>6</sub> Nanoplatelets with a Near-Unity Photoluminescence Quantum Yield

    No full text
    We report the colloidal synthesis of Bi-doped Cs2AgxNa1–xInCl6 double perovskite nanoplatelets (NPLs) exhibiting a near-unity photoluminescence quantum yield (PLQY), a record emission efficiency for nanoscale lead-free metal halides. A combination of optical spectroscopies revealed that nonradiative decay processes in the NPL were suppressed, indicating a well-passivated surface. By comparison, nanocubes with the same composition and surface ligands as the NPLs had a PLQY of only 40%. According to our calculations, the type of trap states arising from the presence of surface defects depends on their specific location: defects located on the facets of nanocubes generate only shallow traps, while those at the edges result in deep traps. In NPLs, due to their extended basal facets, most of the surface defects are facet defects. This so-called facet-defect tolerant behavior of double perovskites explains the more efficient optical emission of NPLs compared to that of nanocubes

    Efficient Solution-Processed Nanoplatelet-Based Light-Emitting Diodes with High Operational Stability in Air

    No full text
    Colloidal nanoplatelets (NPLs), owing to their efficient and narrow-band luminescence, are considered as promising candidates for solution-processable light-emitting diodes (LEDs) with ultrahigh color purity. To date, however, the record efficiencies of NPL-LEDs are significantly lower than those of more-investigated devices based on spherical nanocrystals. This is particularly true for red-emitting NPL-LEDs, the best-reported external quantum efficiency (EQE) of which is limited to 0.63% (EQE = 5% for green NPL-LEDs). Here, we address this issue by introducing a charge-regulating layer of a polar and polyelectrolytic polymer specifically engineered with complementary trimethylammonium and phosphonate functionalities that provide high solubility in orthogonal polar media with respect to the NPL active layer, compatibility with the metal cathode, and the ability to control electron injection through the formation of a polarized interface under bias. Through this synergic approach, we achieve EQE = 5.73% at 658 nm (color saturation 98%) in completely solution processed LEDs. Remarkably, exposure to air increases the EQE to 8.39%, exceeding the best reports of red NPL-LEDs by over 1 order of magnitude and setting a new global record for quantum-dot LEDs of any color embedding solution-deposited organic interlayers. Considering the emission quantum yield of the NPLs (40 ± 5%), this value corresponds to a near-unity internal quantum efficiency. Notably, our devices show exceptional operational stability for over 5 h of continuous drive in air with no encapsulation, thus confirming the potential of NPLs for efficient, high-stability, saturated LEDs
    corecore