63 research outputs found

    Do the cosmological observational data prefer phantom dark energy?

    Full text link
    The dynamics of expansion and large scale structure formation of the Universe are analyzed for models with dark energy in the form of a phantom scalar field which initially mimics a Λ\Lambda-term and evolves slowly to the Big Rip singularity. The discussed model of dark energy has three parameters -- the density and the equation of state parameter at the current epoch, Ωde\Omega_{de} and w0w_0, and the asymptotic value of the equation of state parameter at aa\rightarrow\infty, ca2c_a^2. Their best-fit values are determined jointly with all other cosmological parameters by the MCMC method using observational data on CMB anisotropies and polarization, SNe Ia luminosity distances, BAO measurements and more. Similar computations are carried out for Λ\LambdaCDM and a quintessence scalar field model of dark energy. It is shown that the current data slightly prefer the phantom model, but the differences in the maximum likelihoods are not statistically significant. It is also shown that the phantom dark energy with monotonically increasing density in future will cause the decay of large scale linear matter density perturbations due to the gravitational domination of dark energy perturbations long before the Big Rip singularity.Comment: 13 pages, 8 figures, 5 tables; comments and references added; version accepted for publication in Phys.Rev.

    Primordial black holes and their gravitational-wave signatures

    Full text link
    In the recent years, primordial black holes (PBHs) have emerged as one of the most interesting and hotly debated topics in cosmology. Among other possibilities, PBHs could explain both some of the signals from binary black hole mergers observed in gravitational wave detectors and an important component of the dark matter in the Universe. Significant progress has been achieved both on the theory side and from the point of view of observations, including new models and more accurate calculations of PBH formation, evolution, clustering, merger rates, as well as new astrophysical and cosmological probes. In this work, we review, analyse and combine the latest developments in order to perform end-to-end calculations of the various gravitational wave signatures of PBHs. Different ways to distinguish PBHs from stellar black holes are emphasized. Finally, we discuss their detectability with LISA, the first planned gravitational-wave observatory in space.Comment: 161 pages, 47 figures, comments welcom

    Terrestrial Very-Long-Baseline Atom Interferometry:Workshop Summary

    Get PDF
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Sensitivity of the Cherenkov Telescope Array to the gamma-ray emission from neutrino sources detected by IceCube

    Get PDF
    Gamma-ray observations of the astrophysical neutrino sources are fundamentally important for understanding the underlying neutrino production mechanism. We investigate the Cherenkov Telescope Array (CTA) ability to detect the very-high-energy (VHE) gamma-ray counterparts to the neutrino-emitting Active Galaxies. The CTA performance under different configurations and array layouts is computed based on the neutrino and gamma-ray simulations of steady and transient types of sources, assuming that the neutrino events are detected with the IceCube neutrino telescope. The CTA detection probability is calculated for both CTA sites taking into account the visibility constraints. We find that, under optimal observing conditions, CTA could observe the VHE gamma-ray emission from at least 3 neutrino events per year
    corecore