4 research outputs found

    The development of the insurance market of Ukraine amid the global trends in insurance

    Get PDF
    The insurance market of Ukraine is a part of the global economic environment, which brings together national insurance markets around the world. The paper studies the functioning of the insurance market of Ukraine taking into account the latest trends in the world economy. It notes an extremely small volume of premiums, insufficient coverage of the population and business entities. It is emphasized that the main attention of the experts of the insurance market of Ukraine is focused on its reaction to the annexation of the Crimea and the military conflict in Donbas. It identifies trends, conditions and development factors of the Ukrainian insurance market, as well as its prospects and the role of Ukraine on the global insurance market

    Chrysoberyl and associated beryllium minerals resulting from metamorphic overprinting of the Maršíkov–Schinderhübel III pegmatite, Czech Republic

    No full text
    The Maršíkov–Schinderhübel III pegmatite in the Hrubý Jeseník Mountains, Silesian Domain, Czech Republic, is a classic example of chrysoberyl-bearing LCT granitic pegmatite of beryl–columbite subtype. This thin pegmatite dyke, (up to 1 m in thickness in biotite–amphibole gneiss is characterised by symmetrical internal zoning. Tabular and prismatic chrysoberyl crystals (≤3 cm) occur typically in the intermediate albite-rich unit and rarely in the quartz core. Chrysoberyl microtextures are quite complex; their crystals are irregularly patchy, concentric or fine oscillatory zoned with large variations in Fe content (1.1–5.3 wt.% Fe2O3; ≤0.09 apfu). Chrysoberyl compositions reveal dominant Fe3+ = Al3+ and minor Fe2+ + Ti4+ = 2(Al, Fe)3+ substitution mechanisms in the octahedral sites. Tin, Ga, and V (determined by LA-ICP-MS) are characteristic trace elements incorporated in the chrysoberyl structure, whereas anomalously high Ta and Nb concentrations (thousands ppm) in chrysoberyl are probably caused by nano- to micro-inclusions of Nb–Ta oxide minerals; especially columbite–tantalite. Textural relationships between associated minerals, distinct schistosity of the pegmatite parallel to the host gneiss foliation and fragmentation of the pegmatite body into blocks as a result of superimposed stress are clear evidence for deformation and metamorphic overprinting of the pegmatite. Primary magmatic beryl, albite and muscovite were transformed to chrysoberyl, fibrolitic sillimanite, secondary quartz and muscovite during a high-temperature (~600°C) and medium-pressure (~250–500 MPa) prograde metamorphic stage under amphibolite-facies conditions. A subsequent retrograde, low-temperature (~200–500°C) and pressure (≤250 MPa) metamorphic stage resulted in the local alteration of chrysoberyl to secondary Fe,Na-rich beryl, euclase, bertrandite and late muscovite.Web of Science87338136

    Mineralogical-Petrographical Record of Melt-Rock Interaction and P–T Estimates from the Ozren Massif Ophiolites (Bosnia and Herzegovina)

    No full text
    The Dinaride Ophiolite Belt formed from the Jurassic part of the Neotethys. The investigated Ozren ophiolite complex in Bosnia and Herzegovina consists of peridotites, plagioclase peridotites, plagiogranites, troctolites and other gabbroic rocks, and fewer basalts. Lherzolites and harzburgites contain corroded ortho- and clinopyroxene1 porphyroclasts enclosed in the olivine matrix. The boundaries between olivine aggregates and pyroxene1 and spinel1 are infilled by medium-grained undeformed aggregates of clinopyroxene2, less orthopyroxene2, spinel2, and often clinopyroxene3-spinel3 symplectites. These textures indicate the final crystallization of peridotite in subsolidus conditions. Partial dissolution of deformed pyroxene1 porphyroclasts and coarse-grained spinel1 most likely occurred due to their reaction with the rest melt present in the grain boundaries. The Al decrease from pyroxene1 to pyroxene2 and 3, or the Cr decrease and Al increase from spinel1 to spinel2 and 3 is characteristic. Peridotites are associated with inferred remnants of a gabbro-dolerite layer, whereas basalts and radiolarites occur as rare dm-size fragments in an ophiolitic breccia. Troctolites display interstitial crystallization of plagioclase, clinopyroxene, less Na-Ti-rich amphiboles, and phlogopite in the olivine-spinel matrix, indicating the replacive character of impregnating melt within the dunite layers. Clinopyroxene-plagioclase-ilmenite-±amphibole gabbroic and fewer basaltic dykes in peridotites formed due to subridge extension, mantle thinning, and the deeper mantle melting. Iron-enriched olivines occur in the peridotite-dyke interfaces and troctolites. Hydrated ultramafics and mafics contain amphiboles, biotite, phlogopite, clinozoisite, epidote, and chlorite aggregates. Estimated magmatic to subsolidus T from peridotite two-pyroxene thermometry are 1000–850 °C, for the spinel facies. Ca-in-orthopyroxene1 thermometry provided T of 1028–1068 °C, and Ca-in-orthopyroxene2 thermometry gave 909–961 °C at estimated P of 1.1–0.9 GPa. However, the gabbroic dyke magmatic crystallization T was constrained to 1200–1100 °C at P of 0.45–0.15 GPa by single clinopyroxene thermobarometry. The obtained P–T conditions constrained the deeper mantle environment for the formation of peridotites than troctolites and crosscutting dykes. The ophiolitic thrust-sheet hanging wall conditions in an obduction-related accretionary wedge were estimated from amphibolites at 620 °C and 0.85 GPa by Ti-in-amphibole thermometry and amphibole-plagioclase thermobarometry. 300 °C and 0.5 GPa were determined from an exhumation shear zone using a combination of chlorite thermometry and Si-in-phengite barometry

    Mineralogical-Petrographical Record of Melt-Rock Interaction and P–T Estimates from the Ozren Massif Ophiolites (Bosnia and Herzegovina)

    No full text
    The Dinaride Ophiolite Belt formed from the Jurassic part of the Neotethys. The investigated Ozren ophiolite complex in Bosnia and Herzegovina consists of peridotites, plagioclase peridotites, plagiogranites, troctolites and other gabbroic rocks, and fewer basalts. Lherzolites and harzburgites contain corroded ortho- and clinopyroxene1 porphyroclasts enclosed in the olivine matrix. The boundaries between olivine aggregates and pyroxene1 and spinel1 are infilled by medium-grained undeformed aggregates of clinopyroxene2, less orthopyroxene2, spinel2, and often clinopyroxene3-spinel3 symplectites. These textures indicate the final crystallization of peridotite in subsolidus conditions. Partial dissolution of deformed pyroxene1 porphyroclasts and coarse-grained spinel1 most likely occurred due to their reaction with the rest melt present in the grain boundaries. The Al decrease from pyroxene1 to pyroxene2 and 3, or the Cr decrease and Al increase from spinel1 to spinel2 and 3 is characteristic. Peridotites are associated with inferred remnants of a gabbro-dolerite layer, whereas basalts and radiolarites occur as rare dm-size fragments in an ophiolitic breccia. Troctolites display interstitial crystallization of plagioclase, clinopyroxene, less Na-Ti-rich amphiboles, and phlogopite in the olivine-spinel matrix, indicating the replacive character of impregnating melt within the dunite layers. Clinopyroxene-plagioclase-ilmenite-±amphibole gabbroic and fewer basaltic dykes in peridotites formed due to subridge extension, mantle thinning, and the deeper mantle melting. Iron-enriched olivines occur in the peridotite-dyke interfaces and troctolites. Hydrated ultramafics and mafics contain amphiboles, biotite, phlogopite, clinozoisite, epidote, and chlorite aggregates. Estimated magmatic to subsolidus T from peridotite two-pyroxene thermometry are 1000–850 °C, for the spinel facies. Ca-in-orthopyroxene1 thermometry provided T of 1028–1068 °C, and Ca-in-orthopyroxene2 thermometry gave 909–961 °C at estimated P of 1.1–0.9 GPa. However, the gabbroic dyke magmatic crystallization T was constrained to 1200–1100 °C at P of 0.45–0.15 GPa by single clinopyroxene thermobarometry. The obtained P–T conditions constrained the deeper mantle environment for the formation of peridotites than troctolites and crosscutting dykes. The ophiolitic thrust-sheet hanging wall conditions in an obduction-related accretionary wedge were estimated from amphibolites at 620 °C and 0.85 GPa by Ti-in-amphibole thermometry and amphibole-plagioclase thermobarometry. 300 °C and 0.5 GPa were determined from an exhumation shear zone using a combination of chlorite thermometry and Si-in-phengite barometry
    corecore