2,215 research outputs found

    Deterministic constant-temperature dynamics for dissipative quantum systems

    Get PDF
    A novel method is introduced in order to treat the dissipative dynamics of quantum systems interacting with a bath of classical degrees of freedom. The method is based upon an extension of the Nos\`e-Hoover chain (constant temperature) dynamics to quantum-classical systems. Both adiabatic and nonadiabatic numerical calculations on the relaxation dynamics of the spin-boson model show that the quantum-classical Nos\`e-Hoover chain dynamics represents the thermal noise of the bath in an accurate and simple way. Numerical comparisons, both with the constant energy calculation and with the quantum-classical Brownian motion treatment of the bath, show that the quantum-classical Nos\`e-Hoover Chain dynamics can be used to introduce dissipation in the evolution of a quantum subsystem even with just one degree of freedom for the bath. The algorithm can be computationally advantageous in modeling, within computer simulation, the dynamics of a quantum subsystem interacting with complex molecular environments.Comment: Revised versio

    Random graph model with power-law distributed triangle subgraphs

    Full text link
    Clustering is well-known to play a prominent role in the description and understanding of complex networks, and a large spectrum of tools and ideas have been introduced to this end. In particular, it has been recognized that the abundance of small subgraphs is important. Here, we study the arrangement of triangles in a model for scale-free random graphs and determine the asymptotic behavior of the clustering coefficient, the average number of triangles, as well as the number of triangles attached to the vertex of maximum degree. We prove that triangles are power-law distributed among vertices and characterized by both vertex and edge coagulation when the degree exponent satisfies 2<β<2.52<\beta<2.5; furthermore, a finite density of triangles appears as β=2+1/3\beta=2+1/3.Comment: 4 pages, 2 figure; v2: major conceptual change

    Phase-Space Metric for Non-Hamiltonian Systems

    Full text link
    We consider an invariant skew-symmetric phase-space metric for non-Hamiltonian systems. We say that the metric is an invariant if the metric tensor field is an integral of motion. We derive the time-dependent skew-symmetric phase-space metric that satisfies the Jacobi identity. The example of non-Hamiltonian systems with linear friction term is considered.Comment: 12 page

    New ADS Functionality for the Curator

    Full text link
    In this paper we provide an update concerning the operations of the NASA Astrophysics Data System (ADS), its services and user interface, and the content currently indexed in its database. As the primary information system used by researchers in Astronomy, the ADS aims to provide a comprehensive index of all scholarly resources appearing in the literature. With the current effort in our community to support data and software citations, we discuss what steps the ADS is taking to provide the needed infrastructure in collaboration with publishers and data providers. A new API provides access to the ADS search interface, metrics, and libraries allowing users to programmatically automate discovery and curation tasks. The new ADS interface supports a greater integration of content and services with a variety of partners, including ORCID claiming, indexing of SIMBAD objects, and article graphics from a variety of publishers. Finally, we highlight how librarians can facilitate the ingest of gray literature that they curate into our system.Comment: Submitted to the Proceedings of Library and Information Services in Astronomy VIII, Strasbourg, Franc

    Vestibulo-Ocular Reflex Modification after Virtual Environment Exposure

    Get PDF
    Immersion in an illusory world is possible by means of virtual reality (VR), where environmental perception is modi bff c1c ed by artificial sensorial stimulation. The application of VR for the assessment and rehabilitation of pathologies affecting the vestibular system, in terms of both diagnosis and care, could represent an interesting new line of research. Our perception of reality is in fact based on static and dynamic spatial information perceived by our senses. During head movements in a virtual environment the images on the display and the labyrinthine information relative to the head angular accelerations differ and therefore a visuo-vestibular conflict is present. It is known that mismatches between visual and labyrinthine information may modify the vestibulo-oculomotor reflex (VOR) gain. We studied the post-immersion modifications in 20 healthy subjects (mean age 25 years) exposed to a virtual environment for 20 min by wearing a head-mounted display. VOR gain and phase were measured by means of harmonic sinusoidal stimulation in the dark before, at the end of and 30 min after VR exposure. A VOR gain reduction was observed in all subjects at the end of VR exposure which disappeared after 30 min. Our data show that exposure to a virtual environment can induce a temporary modi bff c1c cation of the VOR gain. This bff c1c nding can be employed to enable an artificial, instrumental modification of the VOR gain and therefore opens up new perspectives in the assessment and rehabilitation of vestibular diseases

    Pass/fail grading in medical school and impact on residency placement

    Get PDF
    Objective: There is a trend toward using pass/fail (P/F) grading in the first 2 years of medical school as it has been noted to improve student well-being and academic performance is not negatively impacted. It is important that medical students are afforded the best medical education possible to prepare them for residency placement. Thus, the purpose of this study was to evaluate the impact of P/F grading in medical school on residency placement. Methods: This study compared archival residency match data from two medical school classes. The Class of 2016 had tiered grading and the Class of 2017 had P/F grading in the first year of medical school. Doximity’s Residency Navigator was used to rank the residency programs and an independent samples t-test was calculated to determine if residency rankings differed by class. Results: The findings showed no statistically significant differences in residency placement when comparing a cohort of medical school graduates with tiered grading to a cohort with P/F grading in the first year of medical school. Conclusion: These findings may be useful to medical education leaders when making decisions about grading systems. Medical education leaders should consider implementing P/F grading into the first year of medical school

    Complement Receptor 1/Cd35 Is a Receptor for Mannan-Binding Lectin

    Get PDF
    Mannan-binding lectin (MBL), a member of the collectin family, is known to have opsonic function, although identification of its cellular receptor has been elusive. Complement C1q, which is homologous to MBL, binds to complement receptor 1 (CR1/CD35), and thus we investigated whether CR1 also functions as the MBL receptor. Radioiodinated MBL bound to recombinant soluble CR1 (sCR1) that had been immobilized on plastic with an apparent equilibrium dissociation constant of 5 nM. N-acetyl-d-glucosamine did not inhibit sCR1–MBL binding, indicating that the carbohydrate binding site of MBL is not involved in binding CR1. C1q inhibited MBL binding to immobilized sCR1, suggesting that MBL and C1q might bind to the same or adjacent sites on CR1. MBL binding to polymorphonuclear leukocytes (PMNs) was associated positively with changes in CR1 expression induced by phorbol myristate acetate. Finally, CR1 mediated the adhesion of human erythrocytes to immobilized MBL and functioned as a phagocytic receptor on PMNs for MBL–immunoglobulin G opsonized bacteria. Thus, MBL binds to both recombinant sCR1 and cellular CR1, which supports the role of CR1 as a cellular receptor for the collectin MBL
    • …
    corecore