226 research outputs found

    Orbit and intrinsic spin-up of the newly discovered transient X-ray pulsar Swift J0243.6+6124

    Full text link
    We present the orbital solution for the newly discovered transient Be X-ray binary Swift J0243.6+6124 based on the data from gamma-ray burst monitor onboard Fermi obtained during the Oct 2017 outburst. We model the Doppler induced and intrinsic spin variations of the neutron star assuming that the later is driven by accretion torque and discuss the implications of the observed spin variations for the parameters of the neutron star and the binary. In particular we conclude that the neutron star must be strongly magnetized, and estimate the distance to the source at ∼\sim5 kpc.Comment: accepted in A&

    New hard X-ray sources discovered in the ongoing INTEGRAL Galactic Plane survey after 14 years of observations

    Full text link
    The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) continues to successfully work in orbit after its launch in 2002. The mission provides the deepest ever survey of hard X-ray sources throughout the Galaxy at energies above 20 keV. We report on a catalogue of new hard X-ray source candidates based on the latest sky maps comprising 14 years of data acquired with the IBIS telescope onboard INTEGRAL in the Galactic Plane (|b|<17.5 deg). The current catalogue includes in total 72 hard X-ray sources detected at S/N>4.7 sigma and not known to previous INTEGRAL surveys. Among them, 31 objects have also been detected in the on-going all-sky survey by the BAT telescope of the Swift observatory. For 26 sources on the list, we suggest possible identifications: 21 active galactic nuclei, two cataclysmic variables, two isolated pulsars or pulsar wind nebulae, and one supernova remnant; 46 sources from the catalogue remain unclassified.Comment: 7 pages, 2 figures, 2 tables. Submitted to MNRAS Letters, comments welcom

    Optically thick envelopes around ULXs powered by accreating neutron stars

    Full text link
    Magnetized neutron stars power at least some ultra-luminous X-ray sources. The accretion flow in these cases is interrupted at the magnetospheric radius and then reaches the surface of a neutron star following magnetic field lines. Accreting matter moving along magnetic field lines forms the accretion envelope around the central object. We show that, in case of high mass accretion rates ≳1019 g s−1\gtrsim 10^{19}\,{\rm g\,s^{-1}} the envelope becomes closed and optically thick, which influences the dynamics of the accretion flow and the observational manifestation of the neutron star hidden behind the envelope. Particularly, the optically thick accretion envelope results in a multi-color black-body spectrum originating from the magnetospheric surface. The spectrum and photon energy flux vary with the viewing angle, which gives rise to pulsations characterized by high pulsed fraction and typically smooth pulse profiles. The reprocessing of radiation due to interaction with the envelope leads to the disappearance of cyclotron scattering features from the spectrum. We speculate that the super-orbital variability of ultra-luminous X-ray sources powered by accreting neutron stars can be attributed to precession of the neutron star due to interaction of magnetic dipole with the accretion disc.Comment: 8 pages, 6 figures, accepted for publication in MNRA
    • …
    corecore