17 research outputs found

    Evaluation of the energy efficiency of functioning and increase in the operating time of hydraulic drives of sucker-rod pump units in difficult operating conditions

    Get PDF
    The necessity of improving the drives of sucker-rod pump units operated in conditions of low-yielding and complicated wells was substantiated. For complicated oil production conditions the use of hydraulic drive is promising, it allows selecting and setting rational operating regimes of downhole equipment. The results of comparative tests of traditional mechanical and hydraulic drives with pneumatic and electrodynamic balancing types are presented. The generalized indicator of assessing the efficiency of operation of prospective hydraulic drives for DCSN is suggested - the energy efficiency coefficient ke.ef, equal to the ratio of the average value of specific energy consumption for production of well fluid during operation of DCSN equipped with a balancing pumping unit to the average value of specific energy consumption for production of well fluid during operation of the tested hydraulic drive for DCSN. It was experimentally proved that the use of hydraulic drive of DCSN with pneumatic balancing is characterized by low energy efficiency of the process of production of well fluid. Proposed technical solutions aimed at improving the energy efficiency of operation and increasing the operating time of hydraulic actuators USSN in conditions of marginal and difficult wells. The methodological basis for assessing the economic efficiency of introducing promising hydraulic drives for ESPs is given

    Performance Evaluation of Heading-and-Winning Machines in the Conditions of Potash Mines

    No full text
    The authors focus on the process of potash ore production by a mechanized method. They show that currently there are no approved procedures for assessing the performance of heading-and-winning machines operating in the conditions of potash mines. This causes difficulties in determining the field of application of heading-and-winning machines, complicates the search for implicit technical solutions for the modernisation of existing models of mining units, prohibits real-time monitoring of the stability of stope-based technological processes and makes it difficult to assess the performance of the services concerning mining enterprises. The work represents an aggregate assessment of the performance of heading-and-winning machines for potash mines by determining complex indicators describing the technological and technical levels of organising the work in stopes. Such indicators are the coefficients of productivity and energy efficiency, respectively. Experimental studies have been carried out in the conditions of the potash mine of the Verkhnekamskoye potassium-magnesium salt deposit to assess the performance of the latest and most productive Ural-20R heading-and-winning machines manufactured in Russia. Using the above methodological approaches, this paper shows that the unsatisfactory technological performance of the studied machine is due to the low productivity of the mine district transport. The average productivity coefficient was 0.29. At the same time, high values of the energy efficiency coefficient show that the productivity of the machine is on par with design conditions

    Influence of Lipid Composition of Cationic Liposomes 2X3-DOPE on mRNA Delivery into Eukaryotic Cells

    No full text
    The design of cationic liposomes for efficient mRNA delivery can significantly improve mRNA-based therapies. Lipoplexes based on polycationic lipid 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2X3) and helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) were formulated in different molar ratios (1:1, 1:2, 1:3) to efficiently deliver model mRNAs to BHK-21 and A549. The objective of this study was to examine the effect of 2X3-DOPE composition as well as lipid-to-mRNA ratio (amino-to-phosphate group ratio, N/P) on mRNA transfection. We found that lipoplex-mediated transfection efficiency depends on both liposome composition and the N/P ratio. Lipoplexes with an N/P ratio of 10/1 showed nanometric hydrodynamic size, positive ζ potential, maximum loading, and transfection efficiency. Liposomes 2X3-DOPE (1:3) provided the superior delivery of both mRNA coding firefly luciferase and mRNA-eGFP into BHK-21 cells and A549 cells, compared with commercial Lipofectamine MessengerMax

    Fatty Acid Changes in Nearshore Phytoplankton under Anthropogenic Impact as a Biodiversity Risk Factor for the World’s Deepest Lake Baikal

    No full text
    In this study, we present results on fatty acid analysis of phytoplankton of Lake Baikal, the world’s deepest lake, which differs from other lakes by its oceanic features. Since we used a large-mesh net, the net sample phytoplankton were primarily represented by the large elongated diatom Synedra acus. subsp. radians (Kützing) Skabichevskij. The similar algae composition of net samples of spring season phytoplankton collected at different sites of the lake allows us to compare results of the fatty acid analysis of these samples. The phytoplankton diversity of the sedimentation samples was contrary represented by 32 algae species. There are clear changes in the fatty acid composition of net phytoplankton exposed to anthropogenic impacts of varying intensity. The content of polyunsaturated fatty acids in phytoplankton collected from central stations (pelagic stations at a distance of ~10–30 km from the shoreline) without anthropogenic impact was higher by up to 15% than phytoplankton collected from nearshore stations (littoral stations at a distance of ~0.01–0.05 km from the shoreline) and offshore stations (pelagic stations at a distance of ~3 km from the shoreline). The interlaboratory precision of fatty acid determination of phytoplankton is estimated as ≤10%. We found high content of the lipid peroxidation marker (80–340 μg g−1 of dry weight) in phytoplankton from nearshore and offshore stations with intensive anthropogenic impact. In phytoplankton from central stations, we did not find any lipid peroxidation. Determination of unsaturated fatty acids, coupled with analysis of fatty acid peroxidation products, can be used to evaluate the level of anthropogenic impact in terms of ecological health and biodiversity conservation

    Fatty Acid Changes in Nearshore Phytoplankton under Anthropogenic Impact as a Biodiversity Risk Factor for the World’s Deepest Lake Baikal

    No full text
    In this study, we present results on fatty acid analysis of phytoplankton of Lake Baikal, the world’s deepest lake, which differs from other lakes by its oceanic features. Since we used a large-mesh net, the net sample phytoplankton were primarily represented by the large elongated diatom Synedra acus. subsp. radians (Kützing) Skabichevskij. The similar algae composition of net samples of spring season phytoplankton collected at different sites of the lake allows us to compare results of the fatty acid analysis of these samples. The phytoplankton diversity of the sedimentation samples was contrary represented by 32 algae species. There are clear changes in the fatty acid composition of net phytoplankton exposed to anthropogenic impacts of varying intensity. The content of polyunsaturated fatty acids in phytoplankton collected from central stations (pelagic stations at a distance of ~10–30 km from the shoreline) without anthropogenic impact was higher by up to 15% than phytoplankton collected from nearshore stations (littoral stations at a distance of ~0.01–0.05 km from the shoreline) and offshore stations (pelagic stations at a distance of ~3 km from the shoreline). The interlaboratory precision of fatty acid determination of phytoplankton is estimated as ≤10%. We found high content of the lipid peroxidation marker (80–340 μg g−1 of dry weight) in phytoplankton from nearshore and offshore stations with intensive anthropogenic impact. In phytoplankton from central stations, we did not find any lipid peroxidation. Determination of unsaturated fatty acids, coupled with analysis of fatty acid peroxidation products, can be used to evaluate the level of anthropogenic impact in terms of ecological health and biodiversity conservation

    The structure of microbial community and degradation of diatoms in the deep near-bottom layer of Lake Baikal.

    Get PDF
    Insight into the role of bacteria in degradation of diatoms is important for understanding the factors and components of silica turnover in aquatic ecosystems. Using microscopic methods, it has been shown that the degree of diatom preservation and the numbers of diatom-associated bacteria in the surface layer of bottom sediments decrease with depth; in the near-bottom water layer, the majority of bacteria are associated with diatom cells, being located either on the cell surface or within the cell. The structure of microbial community in the near-bottom water layer has been characterized by pyrosequencing of the 16S rRNA gene, which has revealed 149 208 unique sequences. According to the results of metagenomic analysis, the community is dominated by representatives of Proteobacteria (41.9%), Actinobacteria (16%); then follow Acidobacteria (6.9%), Cyanobacteria (5%), Bacteroidetes (4.7%), Firmicutes (2.8%), Nitrospira (1.6%), and Verrucomicrobia (1%); other phylotypes account for less than 1% each. For 18.7% of the sequences, taxonomic identification has been possible only to the Bacteria domain level. Many bacteria identified to the genus level have close relatives occurring in other aquatic ecosystems and soils. The metagenome of the bacterial community from the near-bottom water layer also contains 16S rRNA gene sequences found in previously isolated bacterial strains possessing hydrolytic enzyme activity. These data show that potential degraders of diatoms occur among the vast variety of microorganisms in the near-bottom water of Lake Baikal

    Ionofore antibiotic polynactin produced by <i>Streptomyces</i> sp. 156A isolated from Lake Baikal

    No full text
    <p>The potential antibacterial activity of secondary metabolites produced by <i>Streptomyces</i> sp. 156A isolated from Lake Baikal was investigated. The selective liquid–liquid extraction method was applied to obtain a mixture of nactins (polynactin) produced by the strain. The polynactin consisted of nonactin (3%), monactin (18%), dinactin (36%), trinactin (31%) and tetranactin (12%). The compounds were identified by MS/MS, <sup>1</sup>H and <sup>13</sup>C NMR methods. The loss of neutral 184 and 198 Da fragments from a sodiated molecular ion, [M + Na]<sup>+</sup>, of nactins was observed in the MS/MS spectrum. The polynactin was shown to possess the antibiotic activity against Gram-positive strains including opportunistic strains and strains isolated from various ecosystems of Lake Baikal.</p

    Transferase and hydrolytic activities of the laminarinase from rhodothermus marinus and its M133A, M133C, and M133W mutants

    No full text
    Comparative studies of the transglycosylation and hydrolytic activities have been performed on the Rhodothermus marinus β-1,3-glucanase (laminarinase) and its M133A, M133C, and M133W mutants. The M133C mutant demonstrated near 20% greater rate of transglycosylation activity in comparison with the M133A and M133W mutants that was measured by NMR quantitation of nascent β(1-4) and β(1-6) linkages. To obtain kinetic probes for the wild-type enzyme and Met-133 mutants, p-nitrophenyl β-laminarin oligosaccharides of degree of polymerisation 2–8 were synthesized enzymatically. Catalytic efficiency values, k cat/K m, of the laminarinase catalysed hydrolysis of these oligosaccharides suggested possibility of four negative and at least three positive binding subsites in the active site. Comparison of action patterns of the wild-type and M133C mutant in the hydrolysis of the p-nitrophenyl-β-D-oligosac- charides indicated that the increased transglycosylation activity of the M133C mutant did not result from altered subsite affinities. The stereospecificity of the transglycosylation reaction also was unchanged in all mutants; the major transglycosylation products in hydrolysis of p-nitrophenyl laminaribioside were β-glucopyranosyl-β-1,3-D-glucopy- ranosyl-β-1,3-D-glucopyranose and β-glucopyranosyl-β-1, 3-D-glucopyranosyl-β-1,3-D-glucpyranosyl-β-1,3-D- glucopyranoxsid
    corecore