14 research outputs found

    ПРАКТИЧЕСКИЕ АСПЕКТЫ РАЗРАБОТКИ ИНФОРМАЦИОННО-ОБРАЗОВАТЕЛЬНОЙ СРЕДЫ ТЕХНИЧЕСКОГО ВУЗА

    Get PDF
    The approach is offered to development of the informational and educational environment of high technical school,based on deep integration of electronic educational content with methods and tools for the engineering problemssolving. The application program interface (API) is used asthe main integration instrument, which modern Its have.Встатьепредлагаетсяподходкформированиюинформационно-образовательнойсредытехническоговуза, основанный на глубокой интеграции электронного образовательногоконтентас методамии средствами решенияинженерныхиэкономическихзадач. Вкачестве основного инструмента интеграции рассматриваетсяпрограммныйинтерфейсприложенийApplicationProgram Interface (API)

    Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

    Get PDF
    Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS longitudinally polarised muon beam at 160GeV/c and a 6LiD target. The amplitudes of the three azimuthal modulations cos φh, cos 2φh and sin φh were obtained binning the data separately in each of the relevant kinematic variables x, z or pTh and binning in a three-dimensional grid of these three variables. The amplitudes of the cos φh and cos 2φh modulations show strong kinematic dependencies both for positive and negative hadrons. © 2014 CERN for the benefit of the COMPASS Collaboration

    Micro ion beam analysis for the erosion of beryllium marker tiles in a tokamak limiter

    No full text
    Beryllium limiter marker tiles were exposed to plasma in the Joint European Torus to diagnose the erosion of main chamber wall materials. A limiter marker tile consists of a beryllium coating layer (7-9 mu m) on the top of bulk beryllium, with a nickel interlayer (2-3 mu m) between them. The thickness variation of the beryllium coating layer, after exposure to plasma, could indicate the erosion measured by ion beam analysis with backscattering spectrometry. However, interpretations from broad beam backscattering spectra were limited by the non-uniform surface structures. Therefore, micro-ion beam analysis (mu-IBA) with 3 MeV proton beam for Elastic back scattering spectrometry (EBS) and PIXE was used to scan samples. The spot size was in the range of 3-10 mu m. Scanned areas were analysed with scanning electron microscopy (SEM) as well. Combining results from mu-IBA and SEM, we obtained local spectra from carefully chosen areas on which the surface structures were relatively uniform. Local spectra suggested that the scanned area (approximate to 600 mu m x 1200 mu m) contained regions with serious erosion with only 2-3 mu m coating beryllium left, regions with intact marker tile, and droplets with 90% beryllium. The nonuniform erosion, droplets mainly formed by beryllium, and the possible mixture of beryllium and nickel were the major reasons that confused interpretation from broad beam EBS

    Neutronic analysis of JET external neutron monitor response

    No full text
    The power output of fusion devices is measured in terms of the neutron yield which relates directly to the fusion yield. JET made a transition from Carbon wall to ITER-Like Wall (Beryllium/Tungsten/Carbon) during 2010–11. Absolutely calibrated measurement of the neutron yield by JET neutron monitors was ensured by direct measurements using a calibrated 252Cf neutron source (NS) deployed by the in-vessel remote handling system (RHS) inside the JET vacuum vessel. Neutronic calculations were required in order to understand the neutron transport from the source in the vacuum vessel to the fission chamber detectors mounted outside the vessel on the transformer limbs of the tokamak. We developed a simplified computational model of JET and the JET RHS in Monte Carlo neutron transport code MCNP and analyzed the paths and structures through which neutrons reach the detectors and the effect of the JET RHS on the neutron monitor response. In addition we performed several sensitivity studies of the effect of substantial massive structures blocking the ports on the external neutron monitor response. As the simplified model provided a qualitative picture of the process only, some calculations were repeated using a more detailed full 3D model of the JET tokamak

    Activation material selection for multiple foil activation detectors in JET TT campaign

    No full text
    In the preparation for the Deuterium-Tritium campaign, JET will operate with a tritium plasma. The T + T reaction consists of two notable channels: (1) T + T -> He-4 + 2n, (2) T + T -> He-5 + n -> He-4 + 2n. The reaction channel (1) is the reaction with the highest branching ratio and a continuum of neutron energies being produced. Reaction channel (2) produces a spectrum with a peak at 8.8 MeV. A particular problem is the ratio between the individual TT reaction channels, which is highly dependent on the energy of the reacting tritium ions. There are very few measurements on the TT spectrum and the study at JET would be interesting. The work is focused on the determination of the spectral characteristics in the TT plasma discharges, especially on the presence of the 8.8 MeV peak, a consequence of channel (2) of the TT reaction. The possibility to use an optimized set of activation materials in order to target the measurement of the 8.8 MeV peak is studied. The lower limit of detection for the channel (2) ratio within the TT reaction is estimated and the influence of DT source neutrons, which are a consequence of deuterium traces in the plasma, is investigated
    corecore