20 research outputs found

    Wave roller research on barley crops

    Get PDF
    A completely new design of the wave roller is presented, which has no analogues produced by the industry. As a result of research on barley crops, it was revealed that the optimization criterion kse after treatment with the developed wave roller is 0.81. The density and aggregate composition of the soil in all parts of the field (in the ridges and in the troughs of the wave relief) fully meets the agrotechnical requirements. In the area after treatment with a serial roller KKZ-6, the optimization criterion kse = 0.67, which is significantly lower than that of the proposed wave roller. At the same time, soil clods were found on the soil surface, the size of which exceeds 50 mm, which does not meet the agrotechnical requirements for rolling. Studies conducted under production conditions made it possible to determine that the rolling of barley crops with the proposed wave roller increased its yield to 47.2 centners per hectare (by 12.4%) compared to 42 centners per hectare after rolling the crops with ring-toothed rollers KKZ-6

    Ancient origin, functional conservation and fast evolution of DNA-dependent RNA polymerase III

    Get PDF
    RNA polymerase III contains seventeen subunits in yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and in human cells. Twelve of them are akin to the core RNA polymerase I or II. The five other are RNA polymerase III-specific and form the functionally distinct groups Rpc31-Rpc34-Rpc82 and Rpc37-Rpc53. Currently sequenced eukaryotic genomes revealed significant homology to these seventeen subunits in Fungi, Animals, Plants and Amoebozoans. Except for subunit Rpc31, this also extended to the much more distantly related genomes of Alveolates and Excavates, indicating that the complex subunit organization of RNA polymerase III emerged at a very early stage of eukaryotic evolution. The Sch.pombe subunits were expressed in S.cerevisiae null mutants and tested for growth. Ten core subunits showed heterospecific complementation, but the two largest catalytic subunits (Rpc1 and Rpc2) and all five RNA polymerase III-specific subunits (Rpc82, Rpc53, Rpc37, Rpc34 and Rpc31) were non-functional. Three highly conserved RNA polymerase III-specific domains were found in the twelve-subunit core structure. They correspond to the Rpc17-Rpc25 dimer, involved in transcription initiation, to an N-terminal domain of the largest subunit Rpc1 important to anchor Rpc31, Rpc34 and Rpc82, and to a C-terminal domain of Rpc1 that presumably holds Rpc37, Rpc53 and their Rpc11 partner

    Cooperation between Translating Ribosomes and RNA Polymerase in Transcription

    No full text
    International audienceDuring transcription of protein-coding genes, bacterial RNA polymerase (RNAP) is closely followed by a ribosome that translates the newly synthesized transcript. Our in vivo measurements show that the overall elongation rate of transcription is tightly controlled by the rate of translation. Acceleration and deceleration of a ribosome result in corresponding changes in the speed of RNAP. Moreover, we found an inverse correlation between the number of rare codons in a gene, which delay ribosome progression, and the rate of transcription. The stimulating effect of a ribosome on RNAP is achieved by preventing its spontaneous backtracking, which enhances the pace and also facilitates readthrough of roadblocks in vivo. Such a cooperative mechanism ensures that the transcriptional yield is always adjusted to translational needs at different genes and under various growth conditions

    The Human Isoform of RNA Polymerase II Subunit hRPB11bΞ± Specifically Interacts with Transcription Factor ATF4

    No full text
    Rpb11 subunit of RNA polymerase II of Eukaryotes is related to N-terminal domain of eubacterial α subunit and forms a complex with Rpb3 subunit analogous to prokaryotic α2 homodimer, which is involved in RNA polymerase assembly and promoter recognition. In humans, a POLR2J gene family has been identified that potentially encodes several hRPB11 proteins differing mainly in their short C-terminal regions. The functions of the different human specific isoforms are still mainly unknown. To further characterize the minor human specific isoform of RNA polymerase II subunit hRPB11bα, the only one from hRPB11 (POLR2J) homologues that can replace its yeast counterpart in vivo, we used it as bait in a yeast two-hybrid screening of a human fetal brain cDNA library. By this analysis and subsequent co-purification assay in vitro, we identified transcription factor ATF4 as a prominent partner of the minor RNA polymerase II (RNAP II) subunit hRPB11bα. We demonstrated that the hRPB11bα interacts with leucine b-Zip domain located on the C-terminal part of ATF4. Overexpression of ATF4 activated the reporter more than 10-fold whereas co-transfection of hRPB11bα resulted in a 2.5-fold enhancement of ATF4 activation. Our data indicate that the mode of interaction of human RNAP II main (containing major for of hRPB11 subunit) and minor (containing hRPB11bα isoform of POLR2J subunit) transcription enzymes with ATF4 is certainly different in the two complexes involving hRPB3–ATF4 (not hRPB11a–ATF4) and hRpb11bα–ATF4 platforms in the first and the second case, respectively. The interaction of hRPB11bα and ATF4 appears to be necessary for the activation of RNA polymerase II containing the minor isoform of the hRPB11 subunit (POLR2J) on gene promoters regulated by this transcription factor. ATF4 activates transcription by directly contacting RNA polymerase II in the region of the heterodimer of α-like subunits (Rpb3–Rpb11) without involving a Mediator, which provides fast and highly effective activation of transcription of the desired genes. In RNA polymerase II of Homo sapiens that contains plural isoforms of the subunit hRPB11 (POLR2J), the strength of the hRPB11–ATF4 interaction appeared to be isoform-specific, providing the first functional distinction between the previously discovered human forms of the Rpb11 subunit

    Wave roller research on barley crops

    No full text
    A completely new design of the wave roller is presented, which has no analogues produced by the industry. As a result of research on barley crops, it was revealed that the optimization criterion kse after treatment with the developed wave roller is 0.81. The density and aggregate composition of the soil in all parts of the field (in the ridges and in the troughs of the wave relief) fully meets the agrotechnical requirements. In the area after treatment with a serial roller KKZ-6, the optimization criterion kse = 0.67, which is significantly lower than that of the proposed wave roller. At the same time, soil clods were found on the soil surface, the size of which exceeds 50 mm, which does not meet the agrotechnical requirements for rolling. Studies conducted under production conditions made it possible to determine that the rolling of barley crops with the proposed wave roller increased its yield to 47.2 centners per hectare (by 12.4%) compared to 42 centners per hectare after rolling the crops with ring-toothed rollers KKZ-6

    Technology and Properties

    No full text
    НСфтяной кокс - основноС ΡΡ‹Ρ€ΡŒΠ΅ для производства Π°Π½ΠΎΠ΄ΠΎΠ² Π°Π»ΡŽΠΌΠΈΠ½ΠΈΠ΅Π²Ρ‹Ρ… элСктролизСров. ΠšΠ°Ρ‡Π΅ΡΡ‚Π²ΠΎ кокса Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ опрСдСляСт Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡŽ, экологию ΠΈ экономику производства алюминия. Π‘ Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ алюминия, нСфтяной кокс Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΎΠ±Π»Π°Π΄Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ свойствами: минимальной Π·ΠΎΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΈ отсутствиСм каталитичСских примСсСй, высокой ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒΡŽ ΠΊ кислороду ΠΈ БО2, Π½ΠΈΠ·ΠΊΠΎΠΉ ΠΏΠΎΡ€ΠΈΡΡ‚ΠΎΡΡ‚ΡŒΡŽ ΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½Ρ‹ΠΌ элСктросопротивлСниСм, мСханичСской ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΠΎΠΉ для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, ΠΈ Ρ…ΠΎΡ€ΠΎΡˆΠ΅ΠΉ микроструктурой. НСфтяной кокс производят ΠΈΠ· остатков ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π΅Ρ„Ρ‚ΠΈ ΠΈ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹Ρ… Π½Π΅Ρ„Ρ‚Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ². Π’ силу особСнностСй Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ качСство нСфтяного кокса являСтся компромиссом ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ свСтлых Π½Π΅Ρ„Ρ‚Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² ΠΈ ΡΡ‹Ρ€ΡŒΡ для коксования. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π½Π΅ΡƒΠ΄ΠΈΠ²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΡ‡Π΅Π½ΡŒ нСбольшоС количСство коксов ΠΌΠΎΠ³ΡƒΡ‚ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚ΡŒ всСм трСбованиям алюминиСвой ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΌΠΈΡ€ΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠΏΡ‹Ρ‚Π° алюминиСвой ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ рассмотрСны вопросы формирования свойств кокса ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° Π½Π΅Ρ„Ρ‚Π΅ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄ΠΎ склада ΡΡ‹Ρ€ΡŒΡ Π°Π½ΠΎΠ΄Π½ΠΎΠ³ΠΎ производства. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠ°Ρ ΡΡ‚Π°Ρ‚ΡŒΡ являСтся ΠΏΠ΅Ρ€Π²ΠΎΠΉ Π² сСрии совмСстных Ρ€Π°Π±ΠΎΡ‚ сотрудников Бибирского Ρ„Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ унивСрситСта ΠΈ спСциалистов Ачинского ΠΠŸΠ—, посвящСнных ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ производства нСфтяного кокса Π½Π° Ачинском ΠΠŸΠ—.Petroleum coke is the main raw material for aluminum electrolysis anodes. Quality of coke determinates the technology, ecology and economics of production of aluminum. From the aluminum producers point of view, petroleum coke should have the following characteristics: - a minimum ash content and the absence of impurities, - high resistance to oxygen and CO2, - low porosity and electrical resistivity - mechanical strength, acceptable for processing - good microstructure. Petroleum coke is produced from petroleum residues and secondary petroleum products. Because of the peculiarity of the technology, the quality of petroleum coke is a compromise between the receipt of light fuel and raw coking. It is not surprising that only a very small amount of coke can satisfy all the requirements of the aluminum industry. The purpose this article is formation of cokes properties from the beginning of oil refining up to the anode plant. The article is the first in a lot of cooperated works of the Siberian Federal University and specialists of the Achinsk refinery, dedicated to construction and development of production of petroleum coke at the Achinsk refinery

    Technology and Properties

    No full text
    НСфтяной кокс - основноС ΡΡ‹Ρ€ΡŒΠ΅ для производства Π°Π½ΠΎΠ΄ΠΎΠ² Π°Π»ΡŽΠΌΠΈΠ½ΠΈΠ΅Π²Ρ‹Ρ… элСктролизСров. ΠšΠ°Ρ‡Π΅ΡΡ‚Π²ΠΎ кокса Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ опрСдСляСт Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡŽ, экологию ΠΈ экономику производства алюминия. Π‘ Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ алюминия, нСфтяной кокс Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΎΠ±Π»Π°Π΄Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ свойствами: минимальной Π·ΠΎΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΈ отсутствиСм каталитичСских примСсСй, высокой ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒΡŽ ΠΊ кислороду ΠΈ БО2, Π½ΠΈΠ·ΠΊΠΎΠΉ ΠΏΠΎΡ€ΠΈΡΡ‚ΠΎΡΡ‚ΡŒΡŽ ΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½Ρ‹ΠΌ элСктросопротивлСниСм, мСханичСской ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΠΎΠΉ для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, ΠΈ Ρ…ΠΎΡ€ΠΎΡˆΠ΅ΠΉ микроструктурой. НСфтяной кокс производят ΠΈΠ· остатков ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π΅Ρ„Ρ‚ΠΈ ΠΈ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹Ρ… Π½Π΅Ρ„Ρ‚Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ². Π’ силу особСнностСй Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ качСство нСфтяного кокса являСтся компромиссом ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ свСтлых Π½Π΅Ρ„Ρ‚Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² ΠΈ ΡΡ‹Ρ€ΡŒΡ для коксования. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π½Π΅ΡƒΠ΄ΠΈΠ²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΡ‡Π΅Π½ΡŒ нСбольшоС количСство коксов ΠΌΠΎΠ³ΡƒΡ‚ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚ΡŒ всСм трСбованиям алюминиСвой ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΌΠΈΡ€ΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠΏΡ‹Ρ‚Π° алюминиСвой ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ рассмотрСны вопросы формирования свойств кокса ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° Π½Π΅Ρ„Ρ‚Π΅ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄ΠΎ склада ΡΡ‹Ρ€ΡŒΡ Π°Π½ΠΎΠ΄Π½ΠΎΠ³ΠΎ производства. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠ°Ρ ΡΡ‚Π°Ρ‚ΡŒΡ являСтся ΠΏΠ΅Ρ€Π²ΠΎΠΉ Π² сСрии совмСстных Ρ€Π°Π±ΠΎΡ‚ сотрудников Бибирского Ρ„Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ унивСрситСта ΠΈ спСциалистов Ачинского ΠΠŸΠ—, посвящСнных ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ производства нСфтяного кокса Π½Π° Ачинском ΠΠŸΠ—.Petroleum coke is the main raw material for aluminum electrolysis anodes. Quality of coke determinates the technology, ecology and economics of production of aluminum. From the aluminum producers point of view, petroleum coke should have the following characteristics: - a minimum ash content and the absence of impurities, - high resistance to oxygen and CO2, - low porosity and electrical resistivity - mechanical strength, acceptable for processing - good microstructure. Petroleum coke is produced from petroleum residues and secondary petroleum products. Because of the peculiarity of the technology, the quality of petroleum coke is a compromise between the receipt of light fuel and raw coking. It is not surprising that only a very small amount of coke can satisfy all the requirements of the aluminum industry. The purpose this article is formation of cokes properties from the beginning of oil refining up to the anode plant. The article is the first in a lot of cooperated works of the Siberian Federal University and specialists of the Achinsk refinery, dedicated to construction and development of production of petroleum coke at the Achinsk refinery

    Complex Research of Liquid Products of Delayed Coking of Heavy Petroleum Residues of β€œAchinsk Refinery”

    No full text
    ΠžΡΡƒΡ‰Π΅ΡΡ‚Π²Π»Π΅Π½ΠΎ комплСксноС исслСдованиС ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ Π³Ρ€ΡƒΠΏΠΏΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ состава, Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΆΠΈΠ΄ΠΊΠΈΡ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ², ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΡ€ΠΈ коксовании Π³ΡƒΠ΄Ρ€ΠΎΠ½Π° ОАО Β«ΠΠΠŸΠ— Π’ΠΠšΒ» ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ коксования, для ΠΎΡ†Π΅Π½ΠΊΠΈ возмоТности ΠΈΡ… вовлСчСния Π² Π½ΠΎΠΌΠ΅Π½ΠΊΠ»Π°Ρ‚ΡƒΡ€Ρƒ Ρ‚ΠΎΠ²Π°Ρ€Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ. ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ количСствСнным показатСлям ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ состава дистиллятной Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ†Π΅Π½ΠΊΠ΅ содСрТания ΠΎΠ±Ρ‰Π΅ΠΉ ΠΈ ΠΌΠ΅Ρ€ΠΊΠ°ΠΏΡ‚Π°Π½ΠΎΠ²ΠΎΠΉ сСры. ВыявлСны закономСрности ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ состава ΠΈ свойств ΡƒΠ·ΠΊΠΈΡ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ ΠΆΠΈΠ΄ΠΊΠΈΡ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² коксования ΠΎΡ‚ тСхнологичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² процСсса. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΏΠΎ Π΄ΠΎΡΡ‚ΠΈΠΆΠ΅Π½ΠΈΡŽ максимального показатСля Π²Ρ‹Ρ…ΠΎΠ΄Π° ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ состава дистиллятных Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉCarried out a comprehensive study of individual and group component composition, physical and chemical parameters of liquid products formed during coking tar of Β«Achinsk RefineryΒ» at various temperatures and pressures coking in order to assess the possibility of involving them in the range of marketable products. Special attention is paid to the quantitative indicators of the hydrocarbon composition of distillate fraction, as well as evaluating the content of general and mercaptan sulfur. Revealed regularities of changes in the composition and properties of narrow fractions of liquid products of coking on the technological parameters of the process. Developed preliminary recommendations for the achievement of the maximum rate of output and optimal hydrocarbon composition of distillate fraction

    Complex Research of Liquid Products of Delayed Coking of Heavy Petroleum Residues of β€œAchinsk Refinery”

    No full text
    ΠžΡΡƒΡ‰Π΅ΡΡ‚Π²Π»Π΅Π½ΠΎ комплСксноС исслСдованиС ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ Π³Ρ€ΡƒΠΏΠΏΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ состава, Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΆΠΈΠ΄ΠΊΠΈΡ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ², ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΡ€ΠΈ коксовании Π³ΡƒΠ΄Ρ€ΠΎΠ½Π° ОАО Β«ΠΠΠŸΠ— Π’ΠΠšΒ» ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ коксования, для ΠΎΡ†Π΅Π½ΠΊΠΈ возмоТности ΠΈΡ… вовлСчСния Π² Π½ΠΎΠΌΠ΅Π½ΠΊΠ»Π°Ρ‚ΡƒΡ€Ρƒ Ρ‚ΠΎΠ²Π°Ρ€Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ. ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ количСствСнным показатСлям ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ состава дистиллятной Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ†Π΅Π½ΠΊΠ΅ содСрТания ΠΎΠ±Ρ‰Π΅ΠΉ ΠΈ ΠΌΠ΅Ρ€ΠΊΠ°ΠΏΡ‚Π°Π½ΠΎΠ²ΠΎΠΉ сСры. ВыявлСны закономСрности ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ состава ΠΈ свойств ΡƒΠ·ΠΊΠΈΡ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ ΠΆΠΈΠ΄ΠΊΠΈΡ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² коксования ΠΎΡ‚ тСхнологичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² процСсса. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΏΠΎ Π΄ΠΎΡΡ‚ΠΈΠΆΠ΅Π½ΠΈΡŽ максимального показатСля Π²Ρ‹Ρ…ΠΎΠ΄Π° ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ состава дистиллятных Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉCarried out a comprehensive study of individual and group component composition, physical and chemical parameters of liquid products formed during coking tar of Β«Achinsk RefineryΒ» at various temperatures and pressures coking in order to assess the possibility of involving them in the range of marketable products. Special attention is paid to the quantitative indicators of the hydrocarbon composition of distillate fraction, as well as evaluating the content of general and mercaptan sulfur. Revealed regularities of changes in the composition and properties of narrow fractions of liquid products of coking on the technological parameters of the process. Developed preliminary recommendations for the achievement of the maximum rate of output and optimal hydrocarbon composition of distillate fraction
    corecore