44 research outputs found
COMPARATIVE ANALYSIS OF GOST R AND IMO MSC/CIRC. REQUIREMENTS DETERMINING THE QUALITY OF FOAMING AGENTS USED FOR FIRE EXTINGUISHING BY FOAMS
The article provides the analysis of the GOST R and IMO MSC/Circ. requirements determining the quality of foaming agents used for fire extinguishing by foams. There are presented the differences and similarity of testing approaches, as well as the possibility of equipment usage for testing according to various acting standards in the context of Russian standards and the Maritime Register of Shipping
Effect of Sc, Hf, and Yb Additions on Superplasticity of a Fine-Grained Al-0.4%Zr Alloy
This research was undertaken to study the way deformation behaves in ultrafine-grained (UFG)-conducting Al-Zr alloys doped with Sc, Hf, and Yb. All in all, eight alloys were studied with zirconium partially replaced by Sc, Hf, and/or Yb. Doping elements (X = Zr, Sc, Hf, Yb) in the alloys totaled 0.4 wt.%. The choice of doping elements was conditioned by the possible precipitation of Al3X particles with L12 structure in the course of annealing these alloys. Such particles provide higher thermal stability of a nonequilibrium UFG microstructure. Initial coarse-grained samples were obtained by induction casting. A UFG microstructure in the alloys was formed by equal-channel angular pressing (ECAP) at 225 °C. Superplasticity tests were carried out at temperatures ranging from 300 to 500 °C and strain rates varying between 3.3 Ă 10â4 and 3.3 Ă 10â1 sâ1. The highest values of elongation to failure are observed in Sc-doped alloys. A UFG Al-0.2%Zr-0.1%Sc-0.1%Hf alloy has maximum ductility: at 450 °C and a strain rate of 3.3 Ă 10â3 sâ1, relative elongation to failure reaches 765%. At the onset of superplasticity, stress (Ï)âstrain (Δ) curves are characterized by a stage of homogeneous (uniform) strain and a long stage of localized plastic flow. The dependence of homogeneous (uniform) strain (Δeq) on test temperature in UFG Sc-doped alloys is increasing uniformly, which is not the case for other UFG alloys, with Δeq(T) dependence peaking at 350â400 °C. The strain rate sensitivity coefficient of flow stress m is small and does not exceed 0.26â0.3 at 400â500 °C. In UFG alloys containing no Sc, the m coefficient is observed to go down to 0.12â0.18 at 500 °C. It has been suggested that lower m values are driven by intensive grain growth and pore formation in large Al3X particles, which develop specifically at an ingot crystallization stage
Yersinia pestis Caf1 Protein: Effect of Sequence Polymorphism on Intrinsic Disorder Propensity, Serological Cross-Reactivity and Cross-Protectivity of Isoforms.
Yersinia pestis Caf1 is a multifunctional protein responsible for antiphagocytic activity and is a key protective antigen. It is generally conserved between globally distributed Y. pestis strains, but Y. pestis subsp. microtus biovar caucasica strains circulating within populations of common voles in Georgia and Armenia were reported to carry a single substitution of alanine to serine. We investigated polymorphism of the Caf1 sequences among other Y. pestis subsp. microtus strains, which have a limited virulence in guinea pigs and in humans. Sequencing of caf1 genes from 119 Y. pestis strains belonging to different biovars within subsp. microtus showed that the Caf1 proteins exist in three isoforms, the global type Caf1NT1 (Ala48 Phe117), type Caf1NT2 (Ser48 Phe117) found in Transcaucasian-highland and Pre-Araks natural plague foci #4-7, and a novel Caf1NT3 type (Ala48 Val117) endemic in Dagestan-highland natural plague focus #39. Both minor types are the progenies of the global isoform. In this report, Caf1 polymorphism was analyzed by comparing predicted intrinsic disorder propensities and potential protein-protein interactivities of the three Caf1 isoforms. The analysis revealed that these properties of Caf1 protein are minimally affected by its polymorphism. All protein isoforms could be equally detected by an immunochromatography test for plague at the lowest protein concentration tested (1.0 ng/mL), which is the detection limit. When compared to the classic Caf1NT1 isoform, the endemic Caf1NT2 or Caf1NT3 had lower immunoreactivity in ELISA and lower indices of self- and cross-protection. Despite a visible reduction in cross-protection between all Caf1 isoforms, our data suggest that polymorphism in the caf1 gene may not allow the carriers of Caf1NT2 or Caf1NT3 variants escaping from the Caf1NT1-mediated immunity to plague in the case of a low-dose flea-borne infection
Effect of Ï-Phase on the Strength, Stress Relaxation Behavior, and Corrosion Resistance of an Ultrafine-Grained Austenitic Steel AISI 321
This paper reported the results of research into the effect of Equal Channel Angular Pressing (ECAP) temperature and 1-h annealing temperature on mechanical properties, stress-relaxation resistance, and corrosion resistance of austenitic steel AISI 321L with strongly elongated thin ÎŽ-ferrite particles in its microstructure. The formation of αâČ-martensite and fragmentation of austenite grains takes place during ECAP. Ultrafine-grained (UFG) steels demonstrate increased strength. However, we observed a reduced HallâPetch coefficient as compared with coarse-grained (CG) steels due to the fragmentation of ÎŽ-ferrite particles. UFG steel specimens were found to have 2â3 times higher stress-relaxation resistance as compared with CG steels. For the first time, the high stress-relaxation resistance of UFG steels was shown to stem from a internal stress-relaxation mechanism, i.e., the interaction of lattice dislocations with non-equilibrium grain boundaries. Short-time 1-h annealing of UFG steel specimens at 600â800 °C was found to result in the nucleation of Ï-phase nanoparticles. These nanoparticles affect the grain boundary migration, raise strength, and stress-relaxation resistance of steel but reduce the corrosion resistance of UFG steel. Lower corrosion resistance of UFG steel was shown to be related to the formation of αâČ-martensite during ECAP and the nucleation of Ï-phase particles during annealing
LaserâSynthesized Germanium Nanoparticles as Biodegradable Material for NearâInfrared Photoacoustic Imaging and Cancer Phototherapy
Abstract Biodegradable nanomaterials can significantly improve the safety profile of nanomedicine. Germanium nanoparticles (Ge NPs) with a safe biodegradation pathway are developed as efficient photothermal converters for biomedical applications. Ge NPs synthesized by femtosecondâlaser ablation in liquids rapidly dissolve in physiologicalâlike environment through the oxidation mechanism. The biodegradation of Ge nanoparticles is preserved in tumor cells in vitro and in normal tissues in mice with a halfâlife as short as 3.5 days. Biocompatibility of Ge NPs is confirmed in vivo by hematological, biochemical, and histological analyses. Strong optical absorption of Ge in the nearâinfrared spectral range enables photothermal treatment of engrafted tumors in vivo, following intravenous injection of Ge NPs. The photothermal therapy results in a 3.9âfold reduction of the EMT6/P adenocarcinoma tumor growth with significant prolongation of the mice survival. Excellent massâextinction of Ge NPs (7.9 L gâ1 cmâ1 at 808Â nm) enables photoacoustic imaging of bones and tumors, following intravenous and intratumoral administrations of the nanomaterial. As such, strongly absorbing nearâinfraredâlight biodegradable Ge nanomaterial holds promise for advanced theranostics
Two Isoforms of Yersinia Pestis Plasminogen Activator Pla: Intraspecies Distribution, Intrinsic Disorder Propensity, and Contribution to Virulence
It has been shown previously that several endemic Y. pestis isolates with limited virulence contained the I259 isoform of the outer membrane protease Pla, while the epidemic highly virulent strains possessed only the T259 Pla isoform. Our sequence analysis of the pla gene from 118 Y. pestis subsp. microtus strains revealed that the I259 isoform was present exclusively in the endemic strains providing a convictive evidence of more ancestral origin of this isoform. Analysis of the effects of the I259T polymorphism on the intrinsic disorder propensity of Pla revealed that the I259T mutation slightly increases the intrinsic disorder propensity of the C-terminal tail of Pla and makes this protein slightly more prone for disorder-based protein-protein interactions, suggesting that the T259 Pla could be functionally more active than the I259 Pla. This assumption was proven experimentally by assessing the coagulase and fibrinolytic activities of the two Pla isoforms in human plasma, as well as in a direct fluorometric assay with the Pla peptide substrate. The virulence testing of Pla-negative or expressing the I259 and T259 Pla isoforms Y. pestis subsp. microtus and subsp. pestis strains did not reveal any significant difference in LD50 values and dose-dependent survival assays between them by using a subcutaneous route of challenge of mice and guinea pigs or intradermal challenge of mice. However, a significant decrease in time-to-death was observed in animals infected with the epidemic T259 Pla-producing strains as compared to the parent Pla-negative variants. Survival curves of the endemic I259 Pla+ strains fit between them, but significant difference in mean time to death post infection between the Plaâstrains and their I259 Pla+ variants could be seen only in the isogenic set of subsp. pestis strains. These findings suggest an essential role for the outer membrane protease Pla evolution in Y. pestis bubonic infection exacerbation that is necessary for intensification of epidemic process from endemic natural focality with sporadic cases in men to rapidly expanding epizootics followed by human epidemic outbreaks, local epidemics or even pandemics
Evaluating intrinsic disorder propensities of different Caf1 isoforms.
<p>(A) Disorder profiles obtained for the analyzed proteins by PONDRÂź VSL2 (Caf1<sub>NT1</sub> (dashed dark yellow line), Caf1<sub>NT2</sub> (solid gray line), and Caf1<sub>NT3</sub> (dotted dark red line)) and PONDR-FIT (Caf1<sub>NT1</sub> (dashed yellow line), Caf1<sub>NT2</sub> (solid black line), and Caf1<sub>NT3</sub> (dotted red line)). Disorder scores above 0.5 correspond to the residues/regions predicted to be intrinsically disordered. Colored shades around the corresponding PONDR-FIT curves represent distributions of errors in evaluation of disorder propensity. (B) Comparison of the disorder profiles obtained for Caf1 isoforms by PONDR VLXT (Caf1<sub>NT1</sub> (dashed dark yellow line), Caf1<sub>NT2</sub> (solid gray line), and Caf1<sub>NT3</sub> (dotted dark red line)) and their intrinsic disorder-based interactability (Caf1<sub>NT1</sub> (dashed yellow line), Caf1<sub>NT2</sub> (solid black line), and Caf1<sub>NT3</sub> (dotted red line)) predicted using the ANCHOR algorithm [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0162308#pone.0162308.ref051" target="_blank">51</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0162308#pone.0162308.ref052" target="_blank">52</a>]. To simplify comparison of disorder predisposition and presence of potential disorder-based binding sites, ANCHOR data are present in the (1 âANCHOR score form). Therefore, in PONDRÂź VLXT profiles, regions with scores above 0.5 are predicted to be intrinsically disordered, whereas in the ANCHOR profiles, regions with probability below 0.5 are predicted as binding regions.</p
Correlation between serum antibody titers and immunity indices.
<p>Capital caseâisoforms used for immunization; lower caseâgenotypes of the strains used for challenge.</p
Survival of immunized mice in response to bacterial challenge.
<p>Groups of 8 BALB/c mice that were immunized with Caf1<sub>NT1</sub> (A, D), Caf1<sub>NT2</sub> (B, E), or Caf1<sub>NT3</sub> (C, F) isoforms were challenged with <i>Y</i>. <i>pestis</i> strains producing different Caf1 isoforms: Caf1<sub>NT1</sub> (circles); Caf1<sub>NT2</sub> (squares); or Caf1<sub>NT3</sub> (triangles)), at high (2000 LD<sub>50</sub>, panels A-C), or low (200 LD<sub>50</sub>, panels D-F) doses. Survival was monitored for 21 days after the infection. *<i>P</i><0.05; **<i>P</i><0.01 (Log-rank Mantel-Cox test). The results have been acquired with n = 8 BALB/c for each dose of subcutaneous infection.</p
Caf1 isoform cross-reactivity.
<p>Mice were immunized with NT1 (blue bars), NT2 (red bars) or NT3 (green bars) and then bled on day 29 after first (I) or day 43 after second immunization (II) and sera samples were tested in ELISA against NT1, NT2 or NT3 isoforms. Data are means ±SEM.</p