13 research outputs found

    Planar and 3D fibrous polyaniline-based materials for memristive elements

    Get PDF
    We discuss the effect of structure formation of Langmuir polyaniline layers on the performance of memristive thin-film elements as well as the morphology and conductivity of electrospinned PANIā€“PEO nonwovens

    New Principles of Polymer Composite Preparation. MQ Copolymers as an Active Molecular Filler for Polydimethylsiloxane Rubbers

    No full text
    Colorless transparent vulcanizates of silicone elastomers were prepared by mixing the components in a common solvent followed by solvent removal. We studied the correlation between the mechanical behavior of polydimethylsiloxane (PDMS)-rubber compositions prepared using MQ (mono-(M) and tetra-(Q) functional siloxane) copolymers with different ratios of M and Q parts as a molecular filler. The composition and molecular structure of the original rubber, MQ copolymers, and carboxyl-containing PDMS oligomers were also investigated. The simplicity of the preparation of the compositions, high strength and elongation at break, and their variability within a wide range allows us to consider silicone elastomers as a promising alternative to silicone materials prepared by traditional methods

    True Molecular Composites: Unusual Structure and Properties of PDMS-MQ Resin Blends

    No full text
    Poly(dimethyl siloxane)-MQ rubber molecular composites are easy to prepare, as it does not require a heterophase mixing of ingredients. They are characterized by perfect homogeneity, so they are very promising as rubber materials with controllable functional characteristics. The manuscript reveals that MQ resin particles can significantly, more than by two orders of magnitude, enhance the mechanical properties of poly(dimethyl siloxane), and, as fillers, they are not inferior to aerosils. In the produced materials, MQ particles play a role of the molecular entanglements, so rubber molecular weight and MQ filler concentration are the parameters determining the structure and properties of such composites. Moreover, a need for a saturation of the reactive groups and minimization of the surface energy of MQ particles also determine the size and distribution of the filler at different filler rates. An unusual correlation of the concentration of MQ component and the interparticle spacing was revealed. Based on the extraordinary mechanical properties and structure features, a model of the structure poly(dimethyl siloxane)-rubber molecular composites and of its evolution in the process of stretching, was proposed

    Branched Electron-Donor Core Effect in D-Ļ€-A Star-Shaped Small Molecules on Their Properties and Performance in Single-Component and Bulk-Heterojunction Organic Solar Cells ā€ 

    No full text
    Star-shaped donor-acceptor molecules are full of promise for organic photovoltaics and electronics. However, the effect of the branching core on physicochemical properties, charge transport and photovoltaic performance of such donor-acceptor materials in single-component (SC) and bulk heterojunction (BHJ) organic solar cells has not been thoroughly addressed. This work shows the comprehensive investigation of six star-shaped donor-acceptor molecules with terminal hexyldicyanovinyl blocks linked through 2,2ā€²-bithiophene Ļ€-conjugated bridge to different electron-donating cores such as the pristine and fused triphenylamine, tris(2-methoxyphenyl)amine, carbazole- and benzotriindole-based units. Variation of the branching core strongly impacts on such important properties as the solubility, highest occupied molecular orbital energy, optical absorption, phase behavior, molecular packing and also on the charge-carrier mobility. The performance of SC or BHJ organic solar cells are comprehensively studied and compared. The results obtained provide insight on how to predict and fine-tune photovoltaic performance as well as properties of donor-acceptor star-shaped molecules for organic solar cells

    Assembling of Metal-Polymer Nanocomposites in Irradiated Solutions of 1-Vinyl-1,2,4-triazole and Au(III) Ions: Features of Polymerization and Nanoparticles Formation

    No full text
    Gold nanoparticles (AuNPs) stabilized with poly(1-vinyl-1,2,4-triazole) (PVT) have been synthesized via a one-pot manner in irradiated solutions of 1-vinyl-1,2,4-triazole (VT) and Au(III) ions. The transmission electron microscopy examinations have shown that the sizes of nanoparticles formed range from 1 to 11 nm and are affected by the ratio of VT to gold ions. To study the kinetics peculiarities of the VT polymerization and assembling of AuNPs, UV-Vis spectroscopy was used. The analysis of the data obtained reveals that an inhibition period, influenced by Au(III) concentration, is followed by the polymerization of a monomer. Importantly, the absorbed doses, corresponding to the onset of rapid polymerization, correlate with the doses at which the accelerated formation of AuNPs begins. The kinetics aspects, which could lead to such an effect, are discussed

    Combination of Organicā€Based Reservoir Computing and Spiking Neuromorphic Systems for a Robust and Efficient Pattern Classification

    No full text
    Nowadays, neuromorphic systems based on memristors are considered promising approaches to the hardware realization of artificial intelligence systems with efficient information processing. However, a major bottleneck in the physical implementation of these systems is the strong dependence of their performance on the unavoidable variations (cycleā€toā€cycle, c2c, or deviceā€toā€device, d2d) of memristive devices. Recently, reservoir computing (RC) and spiking neuromorphic systems (SNSs) are separately proposed as valuable options to partially mitigate this problem. Herein, both approaches are combined to create a fully organic system based on 1) volatile polyaniline memristive devices for the reservoir layer and 2) nonvolatile parylene memristors for the SNS readout layer. This combination provides a simpler SNS training procedure compared with the formal neural networks and results in greater robustness to device variability, while ensuring the extraction and encoding of the input critical features (performed by the polyaniline reservoir) and the analysis and classification performed by the SNS layer. Furthermore, the spatiotemporal pattern recognition of the system brings us closer to the implementation of efficient and reliable brainā€inspired computing systems built with partially unreliable analog elements

    The Performance of Nonwoven PLLA Scaffolds of Different Thickness for Stem Cells Seeding and Implantation

    No full text
    The 3D reconstruction of 100 μm- and 600 μm-thick fibrous poly-L/L-lactide scaffolds was performed by confocal laser scanning microscopy and supported by scanning electron microscopy and showed that the density of the fibers on the side adjacent to the electrode is higher, which can affect cell diffusion, while the pore size is generally the same. Bone marrow mesenchymal stem cells cultured in a 600 μm-thick scaffold formed colonies and produced conditions for cell differentiation. An in vitro study of stem cells after 7 days revealed that cell proliferation and hepatocyte growth factor release in the 600 μm-thick scaffold were higher than in the 100 μm-thick scaffold. An in vivo study of scaffolds with and without stem cells implanted subcutaneously onto the backs of recipient mice was carried out to test their biodegradation and biocompatibility over a 0–3-week period. The cells seeded onto the 600 μm-thick scaffold promoted significant neovascularization in vivo. After 3 weeks, a significant number of donor cells persisted only on the inside of the 600 μm-thick scaffold. Thus, the use of bulkier matrices allows to prolong the effect of secretion of growth factors by stem cells during implantation. These 600 μm-thick scaffolds could potentially be utilized to repair and regenerate injuries with stem cell co-culture for vascularization of implant

    Effect of oligothiophene Ļ€-bridge length in D-Ļ€-A star-shaped small molecules on properties and photovoltaic performance in single-component and bulk heterojunction organic solar cells and photodetectors

    Get PDF
    Donor-acceptor molecules with thiophene fragments as the Ļ€-bridge represent a promising class of materials for organic photovoltaics especially in single-component (SC) organic solar cells (OSCs) and other related applications. However, the effect of the oligothiophene Ļ€-bridge length on physicochemical properties, photophysics, charge transport, and photovoltaic performance of these materials has not been thoroughly addressed. Here, we report on the synthesis and comprehensive investigation of the series of star-shaped donor-acceptor molecules (0Tā€“4T) with triphenylamine as a donor core linked through an oligothiophene Ļ€-bridge of variable length to the terminal hexyl-dicyanovinyl electron-withdrawing groups. We found that variation of the Ļ€-bridge length from 0 to 4 thiophene units strongly impacts their properties such as the solubility, highest occupied molecular orbital energy, optical absorption and photophysics, film morphology, phase behavior, and molecular packing as well as the charge carrier mobility. The performance of the SC and bulk heterojunction OSCs and photodetectors is comprehensively studied and compared. The results obtained provide insight into how to fine-tune and predict properties and photovoltaic performance of small molecules for organic solar cells and photodetectors

    Hybrid Polycarbosilane-Siloxane Dendrimers: Synthesis and Properties

    No full text
    A series of carbosilane dendrimers of the 4th, 6th, and 7th generations with a terminal trimethylsilylsiloxane layer was synthesized. Theoretical models of these dendrimers were developed, and equilibrium dendrimer conformations obtained via molecular dynamics simulations were in a good agreement with experimental small-angle X-ray scattering (SAXS) data demonstrating molecule monodispersity and an almost spherical shape. It was confirmed that the glass transition temperature is independent of the dendrimer generation, but is greatly affected by the chemical nature of the dendrimer terminal groups. A sharp increase in the zero-shear viscosity of dendrimer melts was found between the 5th and the 7th dendrimer generations, which was qualitatively identical to that previously reported for polycarbosilane dendrimers with butyl terminal groups. The viscoelastic properties of high-generation dendrimers seem to follow some general trends with an increase in the generation number, which are determined by the regular branching structure of dendrimers
    corecore