9 research outputs found

    Research of the spectral characteristics of healthy and fusarium-infected wheat seeds variety Moskovskaya 56 by hyperspectral spectroscopy

    No full text
    In this paper, a spectroscopic identification method is considered for determining the maxima and minima of spectral lines to identify pathogenic microflora in grain seeds. The paper presents the justification for the application of the method of hyperspectral imaging, in order to identify the disease fusarium in the seeds of soft winter wheat. Based on the graphs, it can see the general picture of the influence of the disease fusarium on wheat grains. There is a general decrease in the reflectivity of the grain surface. The strongest deviation of spectral lines is observed in the limit from 660 nm to 900 nm

    Deposition of a SiO2 Shell of Variable Thickness and Chemical Composition to Carbonyl Iron: Synthesis and Microwave Measurements

    No full text
    Protective SiO2 coating deposited to iron microparticles is highly demanded both for the chemical and magnetic performance of the latter. Hydrolysis of tetraethoxysilane is the crucial method for SiO2 deposition from a solution. The capabilities of this technique have not been thoroughly studied yet. Here, two factors were tested to affect the chemical composition and the thickness of the SiO2 shell. It was found that an increase in the hydrolysis reaction time thickened the SiO2 shell from 100 to 200 nm. Moreover, a decrease in the acidity of the reaction mixture not only thickened the shell but also varied the chemical composition from SiO3.0 to SiO8.6. The thickness and composition of the dielectric layer were studied by scanning electron microscopy and energy-dispersive X-ray analysis. Microwave permeability and permittivity of the SiO2-coated iron particles mixed with a paraffin wax matrix were measured by the coaxial line technique. An increase in thickness of the silica layer decreased the real quasi-static permittivity. The changes observed were shown to agree with the Maxwell Garnett effective medium theory. The new method developed to fine-tune the chemical properties of the protective SiO2 shell may be helpful for new magnetic biosensor designs as it allows for biocompatibility adjustment

    Deposition of Thick SiO<sub>2</sub> Coatings to Carbonyl Iron Microparticles for Thermal Stability and Microwave Performance

    No full text
    Thick dielectric SiO2 shells on the surface of iron particles enhance the thermal and electrodynamic parameters of the iron. A technique to deposit thick, 500-nm, SiO2 shell to the surface of carbonyl iron (CI) particles was developed. The method consists of repeated deposition of SiO2 particles with air drying between iterations. This method allows to obtain thick dielectric shells up to 475 nm on individual CI particles. The paper shows that a thick SiO2 protective layer reduces the permittivity of the ‘Fe-SiO2—paraffin’ composite in accordance with the Maxwell Garnett medium theory. The protective shell increases the thermal stability of iron, when heated in air, by shifting the transition temperature to the higher oxide. The particle size, the thickness of the SiO2 shells, and the elemental analysis of the samples were studied using a scanning electron microscope. A coaxial waveguide and the Nicholson–Ross technique were used to measure microwave permeability and permittivity of the samples. A vibrating-sample magnetometer (VSM) was used to measure the magnetostatic data. A synchronous thermal analysis was applied to measure the thermal stability of the coated iron particles. The developed samples can be applied for electromagnetic compatibility problems, as well as the active material for various types of sensors

    Deposition of Thick SiO2 Coatings to Carbonyl Iron Microparticles for Thermal Stability and Microwave Performance

    No full text
    Thick dielectric SiO2 shells on the surface of iron particles enhance the thermal and electrodynamic parameters of the iron. A technique to deposit thick, 500-nm, SiO2 shell to the surface of carbonyl iron (CI) particles was developed. The method consists of repeated deposition of SiO2 particles with air drying between iterations. This method allows to obtain thick dielectric shells up to 475 nm on individual CI particles. The paper shows that a thick SiO2 protective layer reduces the permittivity of the &lsquo;Fe-SiO2&mdash;paraffin&rsquo; composite in accordance with the Maxwell Garnett medium theory. The protective shell increases the thermal stability of iron, when heated in air, by shifting the transition temperature to the higher oxide. The particle size, the thickness of the SiO2 shells, and the elemental analysis of the samples were studied using a scanning electron microscope. A coaxial waveguide and the Nicholson&ndash;Ross technique were used to measure microwave permeability and permittivity of the samples. A vibrating-sample magnetometer (VSM) was used to measure the magnetostatic data. A synchronous thermal analysis was applied to measure the thermal stability of the coated iron particles. The developed samples can be applied for electromagnetic compatibility problems, as well as the active material for various types of sensors

    Influence of Hydrogen Reduction Stage Conditions on the Microwave Properties of Fine Iron Powders Obtained via a Spray-Pyrolysis Technique

    No full text
    The relationship between the chemical purity of one-size particles and microwave properties in ferromagnetic materials is not clearly studied. Ferromagnetic nanostructured iron powders were synthesized from iron nitrate solution using ultrasonic spray-pyrolysis and then reduced in H2 flow at 350, 400, 450, and 500 °C. A rise in the concentration of solutions of a precursor from 10 to 20 wt. % led to an increase in mean particle size. The interrelationship was studied between chemical composition and the microwave dispersion of the powders obtained. An increase in the temperature of reduction changes the chemical composition and increases the amplitude of complex microwave permeability, which was studied using solid-state physics methods (XRD, STA, SEM, and VNA). It was found that annealing at 400 °C is the optimal treatment that allows the production of iron powders, consisting of about 90% of α-Fe phase, possessing a particle surface with low roughness and porosity, and demonstrating intense microwave absorption. Annealing at a higher temperature (500 °C) causes an even higher increase in permeability but leads to the destruction of nanostructured spheres into smaller particles due to grain growth. This destruction causes an abrupt increase in permittivity and therefore significantly reduces potential applications of the product. The insight into chemical–magnetic relationships of these materials enhances the data for design applications in magnetic field sensing
    corecore