3 research outputs found

    Quantized Conductance in an InSb Nanowire

    No full text
    Ballistic one-dimensional transport in semiconductor nanowires plays a central role in creating topological and helical states. The hallmark of such one-dimensional transport is conductance quantization. Here we show conductance quantization in InSb nanowires at nonzero magnetic fields. Conductance plateaus are studied as a function of source-drain bias and magnetic field, enabling extraction of the Landé <i>g</i> factor and the subband spacing

    First-Principles Assessment of CdTe as a Tunnel Barrier at the α‑Sn/InSb Interface

    No full text
    Majorana zero modes, with prospective applications in topological quantum computing, are expected to arise in superconductor/semiconductor interfaces, such as β-Sn and InSb. However, proximity to the superconductor may also adversely affect the semiconductor’s local properties. A tunnel barrier inserted at the interface could resolve this issue. We assess the wide band gap semiconductor, CdTe, as a candidate material to mediate the coupling at the lattice-matched interface between α-Sn and InSb. To this end, we use density functional theory (DFT) with Hubbard U corrections, whose values are machine-learned via Bayesian optimization (BO) [npj Computational Materials 2020, 6, 180]. The results of DFT+U(BO) are validated against angle resolved photoemission spectroscopy (ARPES) experiments for α-Sn and CdTe. For CdTe, the z-unfolding method [Advanced Quantum Technologies 2022, 5, 2100033] is used to resolve the contributions of different kz values to the ARPES. We then study the band offsets and the penetration depth of metal-induced gap states (MIGS) in bilayer interfaces of InSb/α-Sn, InSb/CdTe, and CdTe/α-Sn, as well as in trilayer interfaces of InSb/CdTe/α-Sn with increasing thickness of CdTe. We find that 16 atomic layers (3.5 nm) of CdTe can serve as a tunnel barrier, effectively shielding the InSb from MIGS from the α-Sn. This may guide the choice of dimensions of the CdTe barrier to mediate the coupling in semiconductor–superconductor devices in future Majorana zero modes experiments

    From InSb Nanowires to Nanocubes: Looking for the Sweet Spot

    No full text
    High aspect ratios are highly desired to fully exploit the one-dimensional properties of indium antimonide nanowires. Here we systematically investigate the growth mechanisms and find parameters leading to long and thin nanowires. Variation of the V/III ratio and the nanowire density are found to have the same influence on the “local” growth conditions and can control the InSb shape from thin nanowires to nanocubes. We propose that the V/III ratio controls the droplet composition and the radial growth rate and these parameters determine the nanowire shape. A sweet spot is found for nanowire interdistances around 500 nm leading to aspect ratios up to 35. High electron mobilities up to 3.5 × 10<sup>4</sup> cm<sup>2</sup> V<sup>–1 </sup>s<sup>–1</sup> enable the realization of complex spintronic and topological devices
    corecore