587 research outputs found

    Bending models of lipid bilayer membranes: spontaneous curvature and area-difference elasticity

    Full text link
    We preset a computational study of bending models for the curvature elasticity of lipid bilayer membranes that are relevant for simulations of vesicles and red blood cells. We compute bending energy and forces on triangulated meshes and evaluate and extend four well established schemes for their approximation: Kantor and Nelson 1987, Phys. Rev. A 36, 4020, J\"ulicher 1996, J. Phys. II France 6, 1797, Gompper and Kroll 1996, J. Phys. I France 6, 1305, and Meyer et. al. 2003 in Visualization and Mathematics III, Springer, p35, termed A, B, C, D. We present a comparative study of these four schemes on the minimal bending model and propose extensions for schemes B, C and D. These extensions incorporate the reference state and non-local energy to account for the spontaneous curvature, bilayer coupling, and area-difference elasticity models. Our results indicate that the proposed extensions enhance the models to account for shape transformation including budding/vesiculation as well as for non-axisymmetric shapes. We find that the extended scheme B is superior to the rest in terms of accuracy, and robustness as well as simplicity of implementation. We demonstrate the capabilities of this scheme on several benchmark problems including the budding-vesiculating process and the reproduction of the phase diagram of vesicles

    Flow reconstruction by multiresolution optimization of a discrete loss with automatic differentiation

    Full text link
    We present a potent computational method for the solution of inverse problems in fluid mechanics. We consider inverse problems formulated in terms of a deterministic loss function that can accommodate data and regularization terms. We introduce a multigrid decomposition technique that accelerates the convergence of gradient-based methods for optimization problems with parameters on a grid. We incorporate this multigrid technique to the ODIL (Optimizing a DIscrete Loss) framework. The multiresolution ODIL (mODIL) accelerates by an order of magnitude the original formalism and improves the avoidance of local minima. Moreover, mODIL accommodates the use of automatic differentiation for calculating the gradients of the loss function, thus facilitating the implementation of the framework. We demonstrate the capabilities of mODIL on a variety of inverse and flow reconstruction problems: solution reconstruction for the Burgers equation, inferring conductivity from temperature measurements, and inferring the body shape from wake velocity measurements in three dimensions. We also provide a comparative study with the related, popular Physics-Informed Neural Networks (PINNs) method. We demonstrate that mODIL has three to five orders of magnitude lower computational cost than PINNs in benchmark problems including simple PDEs and lid-driven cavity problems. Our results suggest that mODIL is a very potent, fast and consistent method for solving inverse problems in fluid mechanics.Comment: 16 pages, 9 figure

    A hybrid particle volume-of-fluid method for curvature estimation in multiphase flows

    Full text link
    We present a particle method for estimating the curvature of interfaces in volume-of-fluid simulations of multiphase flows. The method is well suited for under-resolved interfaces, and it is shown to be more accurate than the parabolic fitting that is employed in such cases. The curvature is computed from the equilibrium positions of particles constrained to circular arcs and attracted to the interface. The proposed particle method is combined with the method of height functions at higher resolutions, and it is shown to outperform the current combinations of height functions and parabolic fitting. The algorithm is conceptually simple and straightforward to implement on new and existing software frameworks for multiphase flow simulations thus enhancing their capabilities in challenging flow problems. We evaluate the proposed hybrid method on a number of two- and three-dimensional benchmark flow problems and illustrate its capabilities on simulations of flows involving bubble coalescence and turbulent multiphase flows.Comment: 25 pages, 33 figure

    Isochronous Mode of the Future Collector Ring At the Centre for Heavy Ion Research, Darmstadt, Germany

    Get PDF
    Short-lived exotic nuclei can be produced and separated with the high-energy nuclear beam facility called fragment separator at the Centre for Heavy Ion Research. These nuclides can be injected and stored in the storage ring called experimental storage ring. The lower lifetime limit of the presently existing methods for mass measurements on these nuclides at the experimental storage ring is about a few seconds. We have developed and investigated an isochronous operational mode of the future collector ring, that makes mass measurements feasible for nuclides with lifetimes down to a few microseconds. A mass resolving power of about 150 000 is expected
    • ā€¦
    corecore