23 research outputs found

    Tunneling through a multigrain system: deducing the sample topology from the nonlinear conductance

    Full text link
    We study a current transport through a system of a few grains connected with tunneling links. The exact solution is given for an arbitrarily connected double-grain system with a shared gate in the framework of the orthodox model. The obtained result is generalized for multigrain systems with strongly different tunneling resistances. We analyse the large-scale nonlinear conductance and demonstrate how the sample topology can be unambiguously deduced from the spectroscopy pattern (differential conductance versus gate-bias plot). We present experimental data for a multigrain sample and reconstruct the sample topology. A simple selection rule is formulated to distinguish samples with spectral patterns free from spurious disturbance caused by recharging of some grains nearby. As an example, we demonstrate experimental data with additional peaks in the spectroscopy pattern, which can not be attributed to coupling to additional grains. The described approach can be used to judge the sample topology when it is not guaranteed by fabrication and direct imaging is not possible.Comment: 13 pages (including 8 figures

    Angle-Dependent Microresonator ESR Characterization of Locally Doped Gd3+:Al2O3

    Get PDF
    Interfacing rare-earth-doped crystals with superconducting circuit architectures provides an attractive platform for quantum memory and transducer devices. Here, we present the detailed characterization of such a hybrid system: a locally implanted rare-earth Gd3+ in Al2O3 spin system coupled to a superconducting microresonator. We investigate the properties of the implanted spin system through angular-dependent microresonator electron spin resonance (micro-ESR) spectroscopy. We find, despite the high-energy near-surface implantation, the resulting micro-ESR spectra to be in excellent agreement with the modeled Hamiltonian, supporting the integration of dopant ions into their relevant lattice sites while maintaining crystalline symmetries. Furthermore, we observe clear contributions from individual microwave field components of our microresonator, emphasizing the need for controllable local implantation

    Reflection-enhanced gain in traveling-wave parametric amplifiers

    Get PDF
    The operating principle of traveling-wave parametric amplifiers is typically understood in terms of the standard coupled mode theory, which describes the evolution of forward propagating waves without any reflections, i.e., for perfect impedance matching. However, in practice, superconducting microwave amplifiers are unmatched nonlinear finite-length devices, where the reflecting waves undergo complex parametric processes, not described by the standard coupled mode theory. Here, we present an analytical solution for the TWPA gain, which includes the interaction of reflected waves. These reflections result in corrections to the well-known results of the standard coupled mode theory, which are obtained for both three-wave and four-wave mixing processes. Due to these reflections, the gain is enhanced and unwanted nonlinear phase modulations are suppressed. Predictions of the model are experimentally demonstrated on two types of unmatched TWPA, based on coplanar waveguides with a central wire consisting of (i) a high kinetic inductance superconductor, and (ii) an array of 2000 Josephson junctions

    Quantum Resistance Standard Based on Epitaxial Graphene

    Full text link
    We report development of a quantum Hall resistance standard accurate to a few parts in a billion at 300 mK and based on large area epitaxial graphene. The remarkable precision constitutes an improvement of four orders of magnitude over the best results obtained in exfoliated graphene and is similar to the accuracy achieved in well-established semiconductor standards. Unlike the traditional resistance standards the novel graphene device is still accurately quantized at 4.2 K, vastly simplifying practical metrology. This breakthrough was made possible by exceptional graphene quality achieved with scalable silicon carbide technology on a wafer scale and shows great promise for future large scale applications in electronics.Comment: Submitte

    Strong electronic coupling between single C60 molecules and gold electrodes prepared by quench condensation at 4 K. A single molecule three terminal device study

    No full text
    We report the first measurements of single C60 molecules trapped in three terminal devices prepared by quench condensation of a gold source and drain electrode on top of an aluminium gate electrode covered with a thin oxide. Our experimental platform allows the source and drain electrodes to be fabricated on the gate oxide at low temperatures and in high vacuum. In a subsequent step, single molecules are evaporated in situ onto the surface and caught in the gap between a source and a drain electrode. This fabrication method ensures a clean contact between the molecule and the gold electrode due to the unbroken vacuum. Our measurements reveal a strong interaction between the C60 molecule and the gold electrodes resulting in the absence of the Coulomb blockade effects observed by others. In addition, we observe an insignificant gate dependence but a pronounced negative differential resistance (NDR) at bias voltages from 20-50 meV. The position of the peak in the NDR shows a pronounced and universal temperature dependence for all six devices included in the study. The results are related to previous measurements in such devices which focus on the detailed nature of the contact region between the molecule and the gold electrode

    Single molecular devices with fullerenes and OligoPhenyleneVinylene (OPV) derivatives

    No full text
    We have studied low temperature electron transport in three terminal single molecule transistors. Devices with OPV revealed a relation between transistor characteristics and position of molecular redox potentials strongly influenced by proximity to the metal. Fullerene based devices demonstrate negative differential resistance and indicate strong coupling of fullerene to gold

    Electron transfer dynamics of bistable single-molecule junctions

    No full text
    We present transport measurements of single-molecule junctions bridged by a molecule with three benzene rings connected by two double bonds and with thiol end-groups that allow chemical binding to gold electrodes. The I-V curves show switching behavior between two distinct states. By statistical analysis of the switching events, we show that a 300 meV mode mediates the transition between the two states. We propose that breaking and reformation of a S-H bond in the contact zone between molecule and electrode explains the observed bistability
    corecore