5 research outputs found

    Configuration and Performance of a Mobile 129Xe Polarizer

    Get PDF
    A stand-alone, self-contained and transportable system for the polarization of (129)Xe by spin exchange optical pumping with Rb is described. This mobile polarizer may be operated in batch or continuous flow modes with medium amounts of hyperpolarized (129)Xe for spectroscopic or small animal applications. A key element is an online nuclear magnetic resonance module which facilitates continuous monitoring of polarization generation in the pumping cell as well as the calculation of the absolute (129)Xe polarization. The performance of the polarizer with respect to the crucial parameters temperature, xenon and nitrogen partial pressures, and the total gas flow is discussed. In batch mode the highest (129)Xe polarization of P(Xe) = 40 % was achieved using 0.1 mbar xenon partial pressure. For a xenon flow of 6.5 and 26 mln/min, P(Xe) = 25 % and P(Xe) = 13 % were reached, respectively. The mobile polarizer may be a practical and efficient means to make the applicability of hyperpolarized (129)Xe more widespread

    Influence of spin 1/2 hetero-nuclei on spin relaxation and polarization transfer among strongly coupled protons

    Get PDF
    Effects of spin-spin interactions on the nuclear magnetic relaxation dispersion (NMRD) of protons were studied in a situation where spin ½ hetero- nuclei are present in the molecule. As in earlier works [K. L. Ivanov, A. V. Yurkovskaya, and H.-M. Vieth, J. Chem. Phys.129, 234513 (2008)10.1063/1.3040272;S. E. Korchak, K. L. Ivanov, A. V. Yurkovskaya, and H.-M. Vieth, J. Chem. Phys.133, 194502 (2010)10.1063/1.3495988], spin-spin interactions have a pronounced effect on the relaxivity tending to equalize the longitudinal relaxation times once the spins become strongly coupled at a sufficiently low magnetic field. In addition, we have found influence of 19F nuclei on the proton NMRD, although in the whole field range, studied protons and fluorine spins were only weakly coupled. In particular, pronounced features in the proton NMRD were found; but each feature was predominantly observed only for particular spin states of the hetero-nuclei. The features are explained theoretically; it is shown that hetero-nuclei can affect the proton NMRD even in the limit of weak coupling when (i) protons are coupled strongly and (ii) have spin-spin interactions of different strengths with the hetero-nuclei. We also show that by choosing the proper magnetic field strength, one can selectively transfer proton spin magnetization between spectral components of choice

    High resolution NMR study of T1magnetic relaxation dispersion. III. Influence of spin 1/2 hetero-nuclei on spin relaxation and polarization transfer among strongly coupled protons

    Full text link
    Effects of spin-spin interactions on the nuclear magnetic relaxation dispersion (NMRD) of protons were studied in a situation where spin ½ hetero-nuclei are present in the molecule. As in earlier works [K. L. Ivanov, A. V. Yurkovskaya, and H.-M. Vieth, J. Chem. Phys. 129, 234513 (2008)10.1063/1.3040272; S. E. Korchak, K. L. Ivanov, A. V. Yurkovskaya, and H.-M. Vieth, J. Chem. Phys. 133, 194502 (2010)10.1063/1.3495988], spin-spin interactions have a pronounced effect on the relaxivity tending to equalize the longitudinal relaxation times once the spins become strongly coupled at a sufficiently low magnetic field. In addition, we have found influence of 19F nuclei on the proton NMRD, although in the whole field range, studied protons and fluorine spins were only weakly coupled. In particular, pronounced features in the proton NMRD were found; but each feature was predominantly observed only for particular spin states of the hetero-nuclei. The features are explained theoretically; it is shown that hetero-nuclei can affect the proton NMRD even in the limit of weak coupling when (i) protons are coupled strongly and (ii) have spin-spin interactions of different strengths with the hetero-nuclei. We also show that by choosing the proper magnetic field strength, one can selectively transfer proton spin magnetization between spectral components of choic

    Hyperon signatures in the PANDA experiment at FAIR

    No full text
    We present a detailed simulation study of the signatures from the sequential decays of the triple-strange pbar p -> Ω+Ω- -> K+ΛbarK- Λ -> K+pbarπ+K-pπ- process in the PANDA central tracking system with focus on hit patterns and precise time measurement. We present a systematic approach for studying physics channels at the detector level and develop input criteria for tracking algorithms and trigger lines. Finally, we study the beam momentum dependence on the reconstruction efficiency for the PANDA detector
    corecore