5 research outputs found

    Genesis of precious metal mineralization in intrusions of ultramafic, alkaline rocks and carbonatites in the north of the Siberian platform

    Get PDF
    The gold and platinum-group elements (PGE) mineralization of the Guli and Kresty intrusions was formed in the process of polyphase magmatism of the central type during the Permian and Triassic age. It is suggested that native osmium and iridium crystal nuclei were formed in the mantle at earlier high-temperature events of magma generation of the mantle substratum in the interval of 765–545 Ma and were brought by meimechite melts to the area of development of magmatic bodies. The pulsating magmatism of the later phases assisted in particle enlargement. Native gold was crystallized at a temperature of 415–200◦C at the hydrothermal-metasomatic stages of the meimechite, melilite, foidolite and carbonatite magmatism. The association of minerals of precious metals with oily, resinous and asphaltene bitumen testifies to the genetic relation of the mineralization to carbonaceous metasomatism. Identifying the carbonaceous gold and platinoid ore formation associated genetically with the parental formation of ultramafic, alkaline rocks and carbonatites is suggested

    Mineralogy of Platinum-Group Elements and Gold in the Ophiolite-Related Placer of the River Bolshoy Khailyk, Western Sayans, Russia

    No full text
    We describe assemblages of platinum-group minerals (PGM) and associated PGE–Au phases found in alluvium along the River Bolshoy Khailyk, in the western Sayans, Russia. The river drains the Aktovrakskiy ophiolitic complex, part of the Kurtushibinskiy belt, as does the Zolotaya River ~15 km away, the site of other placer deposits. Three groups of alloy minerals are described: (1) Os–Ir–Ru compositions, which predominate, (2) Pt–Fe compositions of a Pt3Fe stoichiometry, and (3) Pt–Au–Cu alloys, which likely crystallized in the sequence from Au–(Cu)-bearing platinum, Pt(Au,Cu), Pt(Cu,Au), and PtAuCu2, to PtAu4Cu5. The general trends of crystallization of PGM appear to be: [Os–Ir–Ru alloys] → Pt3Fe-type alloy (with inclusions of Ru-dominant alloy formed by exsolution or via replacement of the host Pt–Fe phase) → Pt–Au–Cu alloys. We infer that Rh and Co mutually substitute for Fe, not Ni, and are incorporated into the pentlandite structure via a coupled mechanism of substitution: [Rh3+ + Co3+ + □ → 3Fe2+]. Many of the Os–Ir–Ru and Pt–Fe grains have porous, fractured or altered rims that contain secondary PGE sulfide, arsenide, sulfarsenide, sulfoantimonide, gold, Pt–Ir–Ni-rich alloys, and rarer phases like Cu-rich bowieite and a Se-rich sulfarsenide of Pt. The accompanying pyroxene, chromian spinel and serpentine are highly magnesian, consistent with a primitive ultramafic source-rock. Whereas the alloy phases indicate a highly reducing environment, late assemblages indicate an oxygenated local environment leading to Fe-bearing Ru–Os oxide (zoned) and seleniferous accessory phases

    Gold in the Oxidized Ores of the Olympiada Deposit (Eastern Siberia, Russia)

    No full text
    Native gold and its satellite minerals were studied throughout the 300 m section of oxidized ores of the Olympiada deposit (Eastern Siberia, Russia). Three zones are identified in the studied section: Upper Zone ~60 g/t Au; Middle Zone ~3 g/t Au; Lower Zone ~20 g/t Au. Supergene and hypogene native gold have been found in these zones. Supergene gold crystals (~1 μm), their aggregates and their globules (100 nm to 1 μm) predominate in the Upper and less in Middle Zone. Relic hypogene gold particles (flattened, fracture and irregular morphology) are sporadically distributed throughout the section. Spongiform gold occurs in the Lower Zone at the boundary with the bedrock, as well as in the bedrock. This gold formed in the process of oxidation of aurostibite, leaching of impurities and its further dissolution. Hypogene gold is commonly isolated but for supergene gold typically associated with ferric (hydr)oxides. New formation of gold occurred due to oxidation of sulfide ores and release of “invisible” gold, as well as dissolution, mobilization and re-deposition of metallic hypogene gold. A model for the formation of oxidized ores with the participation of meteoric and low-temperature hydrothermal waters has been proposed

    Atypical Mineralization Involving Pd-Pt, Au-Ag, REE, Y, Zr, Th, U, and Cl-F in the Oktyabrsky Deposit, Norilsk Complex, Russia

    No full text
    Highly atypical mineralization involving Pd-Pt, Au-Ag, REE, Y, Zr, U, Th, and Cl-F-enriched minerals is found in zones with base metal sulfides (BMS; ~5 vol.% to 20 vol.%) in the eastern portion of the Oktyabrsky deposit in the Norilsk complex (Russia). The overall variations in Mg# index, 100 Mg/(Mg + Fe2+ + Mn), in host-rock minerals are 79.8 → 74.1 in olivine, 77.7 → 65.3 in orthopyroxene, 79.9 → 9.2 in clinopyroxene, and An79.0 → An3.7. The span of clinopyroxene and plagioclase compositions reflects their protracted crystallization from early magmatic to late interstitial associations. The magnesian chromite (Mg# 43.9) trends towards Cr-bearing magnetite with progressive buildups in oxygen fugacity; ilmenite varies from early Mg-rich to late Mn-rich variants. The main BMS are chalcopyrite, pyrrhotite, troilite, and Co-bearing pentlandite, with less abundant cubanite (or isocubanite), rare bornite, Co-bearing pyrite, Cd-bearing sphalerite (or wurtzite), altaite, members of the galena-clausthalite series and nickeline. A full series of Au-Ag alloy compositions is found with minor hessite, acanthite and argentopentlandite. The uncommon assemblage includes monazite-(Ce), thorite-coffinite, thorianite, uraninite, zirconolite, baddeleyite, zircon, bastnäsite-(La), and an unnamed metamict Y-dominant zirconolite-related mineral. About 20 species of PGM (platinum group minerals) were analyzed, including Pd-Pt tellurides, bismuthotellurides, bismuthides and stannides, Pd antimonides and plumbides, a Pd-Ag telluride, a Pt arsenide, a Pd-Ni arsenide, and unnamed Pd stannide-arsenide, Pd germanide-arsenide and Pt-Cu arseno-oxysulfide. The atypical assemblages are associated with Cl-rich annite with up to 7.54 wt.% Cl, Cl-rich hastingsite with up 4.06 wt.% Cl, ferro-hornblende (2.53 wt.% Cl), chlorapatite (>6 wt.% Cl) and extensive solid solutions of chlorapatite, fluorapatite and hydroxylapatite, Cl-bearing members of the chlorite group (chamosite; up to 0.96 wt.% Cl), and a Cl-bearing serpentine (up to 0.79 wt.% Cl). A decoupling of Cl and F in the geochemically evolved system is evident. The complex assemblages formed late from Cl-enriched fluids under subsolidus conditions of crystallization following extensive magmatic differentiation in the ore-bearing sequences

    Atypical Mineralization Involving Pd-Pt, Au-Ag, REE, Y, Zr, Th, U, and Cl-F in the Oktyabrsky Deposit, Norilsk Complex, Russia

    No full text
    Highly atypical mineralization involving Pd-Pt, Au-Ag, REE, Y, Zr, U, Th, and Cl-F-enriched minerals is found in zones with base metal sulfides (BMS; ~5 vol.% to 20 vol.%) in the eastern portion of the Oktyabrsky deposit in the Norilsk complex (Russia). The overall variations in Mg# index, 100 Mg/(Mg + Fe2+ + Mn), in host-rock minerals are 79.8 → 74.1 in olivine, 77.7 → 65.3 in orthopyroxene, 79.9 → 9.2 in clinopyroxene, and An79.0 → An3.7. The span of clinopyroxene and plagioclase compositions reflects their protracted crystallization from early magmatic to late interstitial associations. The magnesian chromite (Mg# 43.9) trends towards Cr-bearing magnetite with progressive buildups in oxygen fugacity; ilmenite varies from early Mg-rich to late Mn-rich variants. The main BMS are chalcopyrite, pyrrhotite, troilite, and Co-bearing pentlandite, with less abundant cubanite (or isocubanite), rare bornite, Co-bearing pyrite, Cd-bearing sphalerite (or wurtzite), altaite, members of the galena-clausthalite series and nickeline. A full series of Au-Ag alloy compositions is found with minor hessite, acanthite and argentopentlandite. The uncommon assemblage includes monazite-(Ce), thorite-coffinite, thorianite, uraninite, zirconolite, baddeleyite, zircon, bastnäsite-(La), and an unnamed metamict Y-dominant zirconolite-related mineral. About 20 species of PGM (platinum group minerals) were analyzed, including Pd-Pt tellurides, bismuthotellurides, bismuthides and stannides, Pd antimonides and plumbides, a Pd-Ag telluride, a Pt arsenide, a Pd-Ni arsenide, and unnamed Pd stannide-arsenide, Pd germanide-arsenide and Pt-Cu arseno-oxysulfide. The atypical assemblages are associated with Cl-rich annite with up to 7.54 wt.% Cl, Cl-rich hastingsite with up 4.06 wt.% Cl, ferro-hornblende (2.53 wt.% Cl), chlorapatite (>6 wt.% Cl) and extensive solid solutions of chlorapatite, fluorapatite and hydroxylapatite, Cl-bearing members of the chlorite group (chamosite; up to 0.96 wt.% Cl), and a Cl-bearing serpentine (up to 0.79 wt.% Cl). A decoupling of Cl and F in the geochemically evolved system is evident. The complex assemblages formed late from Cl-enriched fluids under subsolidus conditions of crystallization following extensive magmatic differentiation in the ore-bearing sequences
    corecore