58 research outputs found

    Identification of the couple GSK3α/c-Myc as a new regulator of hexokinase II in benzo[a]pyrene-induced apoptosis.

    Get PDF
    International audienceThe early apoptotic events induced by environmental pollutants with carcinogenic properties are poorly understood. Here, we focus on the early cytotoxic effects of benzo[a]pyrene (B[a]P). In F258 rat hepatic epithelial cells, B[a]P induces intrinsic apoptosis via a mitochondrial dysfunction characterized by the release of hexokinase II (HKII) from the mitochondria. Cancer cells often have an anomalous cell energy metabolism; since HKII dysfunction regulates B[a]P-induced apoptosis in F258 cells, but may also alter cell energy metabolism, HKII release from the mitochondria may represent an important B[a]P-related carcinogenic issue. Thus in the present study, we aimed at deciphering the mechanisms underlying HKII dysfunction upon B[a]P exposure. We show that while glycogen synthase kinase 3 beta (GSK3β) regulated the expression of HKII at the transcriptional level, glycogen synthase kinase 3 alpha (GSK3α) was involved in B[a]P-induced apoptosis via a decrease in c-Myc expression. The reduced level of c-Myc caused the relocation of HKII from the mitochondria to the cytosol, thereby being involved in the formation of reactive oxygen species and apoptosis. In conclusion, we show that the couple GSK3α/c-Myc plays a key role in B[a]P-induced early apoptotic cell signaling via HKII dysfunction

    A role for lipid rafts in the protection afforded by docosahexaenoic acid against ethanol toxicity in primary rat hepatocytes.

    No full text
    International audience: Previously, we demonstrated that eicosapentaenoic acid enhanced ethanol-induced oxidative stress and cell death in primary rat hepatocytes via an increase in membrane fluidity and lipid raft clustering. In this context, another n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA), was tested with a special emphasis on physical and chemical alteration of lipid rafts. Pretreatment of hepatocytes with DHA reduced significantly ethanol-induced oxidative stress and cell death. DHA protection could be related to an alteration of lipid rafts. Indeed, rafts exhibited a marked increase in membrane fluidity and packing defects leading to the exclusion of a raft protein marker, flotillin. Furthermore, DHA strongly inhibited disulfide bridge formation, even in control cells, thus suggesting a disruption of protein-protein interactions inside lipid rafts. This particular spatial organization of lipid rafts due to DHA subsequently prevented the ethanol-induced lipid raft clustering. Such a prevention was then responsible for the inhibition of phospholipase C-γ translocation into rafts, and consequently of both lysosome accumulation and elevation in cellular low-molecular-weight iron content, a prooxidant factor. In total, the present study suggests that DHA supplementation could represent a new preventive approach for patients with alcoholic liver disease based upon modulation of the membrane structures

    In vitro investigation of intestinal transport mechanism of silicon, supplied as orthosilicic acid-vanillin complex

    No full text
    Silicon (Si) is one of the most abundant trace elements in the body. Although pharmacokinetics data described its absorption from the diet and its body excretion, the mechanisms involved in the uptake and transport of Si across the gut wall have not been established. Methods and results: Caco-2 cells were used as a well-accepted in vitro model of the human intestinal epithelium to investigate the transport, across the intestinal barrier in both the absorption and excretion directions, of Si supplied as orthosilicic acid stabilized by vanillin complex (OSA–VC). The transport of this species was found proportional to the initial concentration and to the duration of incubation, with absorption and excretion mean rates similar to those of Lucifer yellow, a marker of paracellular diffusion, and increasing in the presence of EGTA, a chelator of divalents cations including calcium. A cellular accumulation of Si, polarized from the apical side of cells, was furthermore detected. Conclusion: These results provide evidence that Si, ingested as a food supplement containing OSA–VC, crosses the intestinal mucosa by passive diffusion via the paracellular pathway through the intercellular tight junctions and accumulates intracellularly, probably by an uptake mechanism of facilitated diffusion. This study can help to further understand the kinetic of absorption of Si

    Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium

    No full text
    Phenolic compounds (PCs) are considered to possess anti-inflammatory properties and therefore were proposed as an alternative natural approach to prevent or treat chronic inflammatory diseases. However their effects are not fully understood, particularly at the intestinal level. To further understand their mode of action at the molecular level during intestinal inflammation, an in vitro model of inflamed human intestinal epithelium was established. Different representative dietary PCs, i.e. resveratrol, ellagic and ferulic acids, curcumin, quercetin, chrysin, (−)-epigallocatechin-3-gallate (EGCG) and genistein, were selected. To mimic intestinal inflammation, differentiated Caco-2 cells cultivated in bicameral inserts, in a serum-free medium, were treated with a cocktail of pro-inflammatory substances: interleukin (IL)-1β, tumor necrosis factor-α, interferon-γ and lipopolysaccharides. The inflammatory state was characterized by a leaky epithelial barrier (attenuation of the transepithelial electrical resistance) and by an over-expression at the mRNA and protein levels for pro-inflammatory markers, i.e. IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1), quantified by ELISA and by gene expression analysis using a low-density array allowing the evaluation of expression level for 46 genes relevant of the intestinal inflammation and functional metabolism. Treatment with PCs, used at a realistic intestinal concentration, did not affect cell permeability. In inflamed cells, the incubation with genistein reduced the IL-6 and MCP-1 overproduction, to ca. 50% of the control, whereas EGCG provoked a decrease in the IL-6 and IL-8 over-secretion, by 50 and 60%, respectively. This occurred for both flavonoids without any concomitant inhibition of the corresponding mRNA expression. All the PCs generated a specific gene expression profile, with genistein the most efficient in the downregulation of the expression, or over-expression, of inflammatory genes notably those linked to the arachidonic metabolism pathway. In conclusion, this study provides evidence that genistein and EGCG downregulate the inflammatory response in inflamed intestinal epithelial cells by a pathway implicating largely a post-transcriptional regulatory mechanism
    corecore