3 research outputs found

    mRNA deadenylation by PARN is essential for embryogenesis in higher plants

    No full text
    Deadenylation of mRNA is often the first and rate-limiting step in mRNA decay. PARN, a poly(A)-specific 3′ →5′ ribonuclease which is conserved in many eukaryotes, has been proposed to be primarily responsible for such a reaction, yet the importance of the PARN function at the whole-organism level has not been demonstrated in any species. Here, we show that mRNA deadenylation by PARN is essential for viability in higher plants (Arabidopsis thaliana). Yet, this essential requirement for the PARN function is not universal across the phylogenetic spectrum, because PARN is dispensable in Fungi (Schizosaccharomyces pombe), and can be at least severely downregulated without any obvious consequences in Metazoa (Caenorhabditis elegans). Development of the Arabidopsis embryos lacking PARN (AtPARN), as well as of those expressing an enzymatically inactive protein, was markedly retarded, and ultimately culminated in an arrest at the bent-cotyledon stage. Importantly, only some, rather than all, embryo-specific transcripts were hyperadenylated in the mutant embryos, suggesting that preferential deadenylation of a specific select subset of mRNAs, rather than a general deadenylation of the whole mRNA population, by AtPARN is indispensable for embryogenesis in Arabidopsis. These findings indicate a unique, nonredundant role of AtPARN among the multiple plant deadenylases

    DIAPH1-MFN2 interaction regulates mitochondria-SR/ER contact and modulates ischemic/hypoxic stress

    No full text
    Abstract Inter-organelle contact and communication between mitochondria and sarco/endoplasmic reticulum (SR/ER) maintain cellular homeostasis and are profoundly disturbed during tissue ischemia. We tested the hypothesis that the formin Diaphanous-1 (DIAPH1), which regulates actin dynamics, signal transduction and metabolic functions, contributes to these processes. We demonstrate that DIAPH1 interacts directly with Mitofusin-2 (MFN2) to shorten mitochondria-SR/ER distance, thereby enhancing mitochondria-ER contact in cells including cardiomyocytes, endothelial cells and macrophages. Solution structure studies affirm the interaction between the Diaphanous Inhibitory Domain and the cytosolic GTPase domain of MFN2. In male rodent and human cardiomyocytes, DIAPH1-MFN2 interaction regulates mitochondrial turnover, mitophagy, and oxidative stress. Introduction of synthetic linker construct, which shorten the mitochondria-SR/ER distance, mitigated the molecular and functional benefits of DIAPH1 silencing in ischemia. This work establishes fundamental roles for DIAPH1-MFN2 interaction in the regulation of mitochondria-SR/ER contact networks. We propose that targeting pathways that regulate DIAPH1-MFN2 interactions may facilitate recovery from tissue ischemia
    corecore