26 research outputs found

    The Effects of High Concentrations of Ionic Liquid on GB1 Protein Structure and Dynamics Probed by High-Resolution Magic-Angle-Spinning NMR Spectroscopy

    Get PDF
    Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentrations of ionic liquids, has been challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid–protein interactions. Effect of an ionic liquid (1-butyl-3- methylimidazolium bromide, [C4-mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6–3.5 M, which corresponds to 10–60% v/v). Interactions between GB1 and [C4-mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C4-mim]Br were assigned using 3D methods under HR-MAS conditions. Thus, HR-MAS NMR is a viable tool that could aid in elucidation of molecular mechanisms of ionic liquid–protein interactions

    A triazine-based BODIPY trimer as a molecular viscometer

    Get PDF
    Photophysical behaviour of a novel trimeric BODIPY rotor with a high extinction coefficient is reported. Steady state and time resolved fluorescence measurements established that the trimer could be used as a viscometer for molecular solvents, membrane-like environments and several cancer cell lines

    Expeditious, mechanochemical synthesis of BODIPY dyes

    No full text
    BODIPY dyes have been synthesized under solvent-free or essentially solvent-free conditions, within about 5 minutes in an open-to-air setup by using a pestle and mortar, with yields that are comparable to those obtained via traditional routes that typically require reaction times of several hours to days

    Squaraine-Based Optical Sensors: Designer Toolbox for Exploring Ionic and Molecular Recognitions

    No full text
    Small molecule-based chromogenic and fluorogenic probes play an indispensable role in many sensing applications. Ideal optical chemosensors should provide selectivity and sensitivity towards a variety of analytes. Synthetic accessibility and attractive photophysical properties have made squaraine dyes an enticing platform for the development of chemosensors. This review highlights the versatility of modular assemblies of squaraine-based chemosensors and chemodosimeters that take advantage of the availability of various structurally and functionally diverse recognition motifs, as well as utilizing additional recognition capabilities due to the unique structural features of the squaraine ring

    Spectroscopic Studies on Tetracycline in Room-Temperature Ionic Liquids

    No full text

    Facile Synthesis of Pyrrolyl-Containing Semisquaraines in Water as Precursors for Non-Symmetric Squaraines

    No full text
    One-step reactions between squaric acid and pyrroles, such as 3-ethyl-2,4-dimethyl-pyrrole and 1,2,5-trimethylpyrrole, in water provide the corresponding pyrrol-2-yl- and pyrrol-3-yl-containing semisquaraines in high yields. These semisquaraines serve as useful precursors for the synthesis of various non-symmetric pyrrole-containing squaraine dyes

    Amazing Discoveries of Benthic Fauna from the Abyssal Zone of Lake Baikal

    No full text
    Lake Baikal is a natural laboratory for the study of species diversity and evolution, as a unique freshwater ecosystem meeting the all of the main criteria of the World Heritage Convention. However, despite many years of research, the true biodiversity of the lake is clearly insufficiently studied, especially that of deep-water benthic sessile organisms. For the first time, plastic waste was raised from depths of 110 to 190 m of Lake Baikal. The aim of this study was to examine the biological community inhabiting the plastic substrate using morphological and molecular genetic analysis. Fragments of plastic packaging materials were densely populated: bryozoans, leeches and their cocoons, capsules of gastropod eggs, and turbellaria cocoons were found. All the data obtained as a result of an analysis of the nucleotide sequences of the standard bar-coding fragment of the mitochondrial genome turned out to be unique. Our results demonstrate the prospects for conducting comprehensive studies of artificial substrates to determine the true biodiversity of benthos in the abyssal zone of Lake Baikal
    corecore