7 research outputs found

    Adaptive Filtering Enhances Information Transmission in Visual Cortex

    Full text link
    Sensory neuroscience seeks to understand how the brain encodes natural environments. However, neural coding has largely been studied using simplified stimuli. In order to assess whether the brain's coding strategy depend on the stimulus ensemble, we apply a new information-theoretic method that allows unbiased calculation of neural filters (receptive fields) from responses to natural scenes or other complex signals with strong multipoint correlations. In the cat primary visual cortex we compare responses to natural inputs with those to noise inputs matched for luminance and contrast. We find that neural filters adaptively change with the input ensemble so as to increase the information carried by the neural response about the filtered stimulus. Adaptation affects the spatial frequency composition of the filter, enhancing sensitivity to under-represented frequencies in agreement with optimal encoding arguments. Adaptation occurs over 40 s to many minutes, longer than most previously reported forms of adaptation.Comment: 20 pages, 11 figures, includes supplementary informatio

    Variability and Information in a Neural Code Of The Cat Lateral . . .

    No full text
    A central theme in neural coding concerns the role of response variability and noise in determining the information transmission of neurons. This issue was investigated in single cells of the lateral geniculate nucleus of barbiturate anesthetized cats by quantifying the degree of precision in and the information transmission properties of individual spike train responses to full field, binary (bright or dark), flashing stimuli. We found that neuronal responses could be highly reproducible in their spike timing (about 1-2 ms standard deviation) and spike count (about 0.3 ratio of variance/mean, compared to 1.0 expected for a Poisson process). This degree of precision only became apparent when an adequate length of the stimulus sequence was specified to determine the neural response, emphasizing that the variables relevant to a cell's response must be controlled in order to observe the cell's intrinsic response precision. Responses could carry as much as 3.5 bits/spike of information about the stimulus, a rate that was within a factor of two of the limit the spike train can transmit. Moreover, there appeared to be little sign of redundancy in coding: on average, longer response sequences carried at least as much information about the stimulus as would be obtained by adding together the information carried by shorter response sequences considered independently. There also was no direct evidence found for synergy between response sequences. These results could largely, but not entirely, be explained by a simple model of the response in which one filters the stimulus by the cell's impulse response kernel, thresholds the result at a fairly high level, and incorporates a post-spike refractory period
    corecore