20 research outputs found

    Quantum phase slips in the presence of finite-range disorder

    Get PDF
    To study the effect of disorder on quantum phase slips (QPS) in superconducting wires, we consider the plasmon-only model where disorder can be incorporated into a first-principles instanton calculation. We consider weak but general finite-range disorder and compute the formfactor in the QPS rate associated with momentum transfer. We find that the system maps onto dissipative quantum mechanics, with the dissipative coefficient controlled by the wave (plasmon) impedance Z of the wire and with a superconductor-insulator transition at Z=6.5 kOhm. We speculate that the system will remain in this universality class after resistive effects at the QPS core are taken into account.Comment: 4 pages, as accepted at Phys. Rev. Letter

    Identifying entanglement using quantum "ghost" interference and imaging

    Full text link
    We report a quantum interference and imaging experiment which quantitatively demonstrates that Einstein-Podolsky-Rosen (EPR) type entangled two-photon states exhibit both momentum-momentum and position-position correlations, stronger than any classical correlation. The measurements show indeed that the uncertainties in the sum of momenta and in the difference of positions of the entangled two-photon satisfy both EPR inequalities D(k1+k2)<min(D(k1),D(k2)) and D(x1-x2)<min(D(x1),D(x2)). These two inequalities, together, represent a non-classicality condition. Our measurements provide a direct way to distinguish between quantum entanglement and classical correlation in continuous variables for two-photons/two photons systems.Comment: We have changed Eq.(2) from one inequality to two inequalities. The two expressions are actually consistent with each other, but the new one represents a more stringent condition for entanglement and, in our opinion, better explains the original idea of EPR. We have clarified this point in the paper. 4 pages; submitted to PR

    Comment on ``Dispersion-Independent High-Visibility Quantum Interference ... "

    Full text link
    We show in this Comment that the interpretation of experimental data as well as the theory presented in Atat\"ure et al. [Phys. Rev. Lett. 84, 618 (2000)] are incorrect and discuss why such a scheme cannot be used to "recover" high-visibility quantum interference.Comment: Comment on Atat\"ure et al. [Phys. Rev. Lett. 84, 618 (2000)], 2nd revision, To appear in Phys. Rev. Lett. April, (2001

    Quantum Teleportation with a Complete Bell State Measurement

    Full text link
    We report a quantum teleportation experiment in which nonlinear interactions are used for the Bell state measurements. The experimental results demonstrate the working principle of irreversibly teleporting an unknown arbitrary quantum state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that \emph{all} four Bell states can be distinguished in the Bell state measurement. Teleportation of a quantum state can thus occur with certainty in principle.Comment: 4 pages, submitted to PR

    Observation of π\pi solitons in oscillating waveguide arrays

    Full text link
    Floquet systems with periodically varying in time parameters enable realization of unconventional topological phases that do not exist in static systems with constant parameters and that are frequently accompanied by appearance of novel types of the topological states. Among such Floquet systems are the Su-Schrieffer-Heeger lattices with periodically-modulated couplings that can support at their edges anomalous π\pi modes of topological origin despite the fact that the lattice spends only half of the evolution period in topologically nontrivial phase, while during other half-period it is topologically trivial. Here, using Su-Schrieffer-Heeger arrays composed from periodically oscillating waveguides inscribed in transparent nonlinear optical medium, we report experimental observation of photonic anomalous π\pi modes residing at the edge or in the corner of the one- or two-dimensional arrays, respectively, and demonstrate a new class of topological π\pi solitons bifurcating from such modes in the topological gap of the Floquet spectrum at high powers. π\pi solitons reported here are strongly oscillating nonlinear Floquet states exactly reproducing their profiles after each longitudinal period of the structure. They can be dynamically stable in both one- and two-dimensional oscillating waveguide arrays, the latter ones representing the first realization of the Floquet photonic higher-order topological insulator, while localization properties of such π\pi solitons are determined by their power.Comment: 10 pages, 6 figures, to appear in Science Bulleti

    Quantum interference by two temporally distinguishable pulses

    Full text link
    We report a two-photon interference effect, in which the entangled photon pairs are generated from two laser pulses well-separated in time. In a single pump pulse case, interference effects did not occur in our experimental scheme. However, by introducing a second pump pulse delayed in time, quantum interference was then observed. The visibility of the interference fringes shows dependence on the delay time between two laser pulses. The results are explained in terms of indistinguishability of biphoton amplitudes which originated from two temporally separated laser pulses.Comment: two-column, 4pages, submitted to PRA, minor change

    Bell State Preparation using Pulsed Non-Degenerate Two-Photon Entanglement

    Get PDF
    We report a novel Bell state preparation experiment. High-purity Bell states are prepared by using femtosecond pulse pumped \emph{nondegenerate} collinear spontaneous parametric down-conversion. The use of femtosecond pump pulse {\em does not} result in reduction of quantum interference visibility in our scheme in which post-selection of amplitudes and other traditional mechanisms, such as, using thin nonlinear crystals or narrow-band spectral filters are not used. Another distinct feature of this scheme is that the pump, the signal, and the idler wavelengths are all distinguishable, which is very useful for quantum communications.Comment: 4 pages, submitted to PR
    corecore