2,445 research outputs found
Ansatz of Hans Bethe for a two-dimensional Bose gas
The method of q-oscillator lattices, proposed recently in [hep-th/0509181],
provides the tool for a construction of various integrable models of quantum
mechanics in 2+1 dimensional space-time. In contrast to any one dimensional
quantum chain, its two dimensional generalizations -- quantum lattices -- admit
different geometrical structures. In this paper we consider the q-oscillator
model on a special lattice. The model may be interpreted as a two-dimensional
Bose gas. The most remarkable feature of the model is that it allows the
coordinate Bethe Ansatz: the p-particles' wave function is the sum of plane
waves. Consistency conditions is the set of 2p equations for p one-particle
wave vectors. These "Bethe Ansatz" equations are the main result of this paper.Comment: LaTex2e, 12 page
Explicit Free Parameterization of the Modified Tetrahedron Equation
The Modified Tetrahedron Equation (MTE) with affine Weyl quantum variables at
N-th root of unity is solved by a rational mapping operator which is obtained
from the solution of a linear problem. We show that the solutions can be
parameterized in terms of eight free parameters and sixteen discrete phase
choices, thus providing a broad starting point for the construction of
3-dimensional integrable lattice models. The Fermat curve points parameterizing
the representation of the mapping operator in terms of cyclic functions are
expressed in terms of the independent parameters. An explicit formula for the
density factor of the MTE is derived. For the example N=2 we write the MTE in
full detail. We also discuss a solution of the MTE in terms of bosonic
continuum functions.Comment: 28 pages, 3 figure
Tetrahedron equations and nilpotent subalgebras of U_q(sl_n)
A relation between q-oscillator R-matrix of the tetrahedron equation and
decompositions of Poinkare-Birkhoff-Witt type bases for nilpotent subalgebras
of U_q(sl_n) is observed.Comment: 4 page
Ground states of Heisenberg evolution operator in discrete three-dimensional space-time and quantum discrete BKP equations
In this paper we consider three-dimensional quantum q-oscillator field theory
without spectral parameters. We construct an essentially big set of eigenstates
of evolution with unity eigenvalue of discrete time evolution operator. All
these eigenstates belong to a subspace of total Hilbert space where an action
of evolution operator can be identified with quantized discrete BKP equations
(synonym Miwa equations). The key ingredients of our construction are specific
eigenstates of a single three-dimensional R-matrix. These eigenstates are
boundary states for hidden three-dimensional structures of U_q(B_n^1) and
U_q(D_n^1)$.Comment: 13 page
Quantum 2+1 evolution model
A quantum evolution model in 2+1 discrete space - time, connected with 3D
fundamental map R, is investigated. Map R is derived as a map providing a zero
curvature of a two dimensional lattice system called "the current system". In a
special case of the local Weyl algebra for dynamical variables the map appears
to be canonical one and it corresponds to known operator-valued R-matrix. The
current system is a kind of the linear problem for 2+1 evolution model. A
generating function for the integrals of motion for the evolution is derived
with a help of the current system. The subject of the paper is rather new, and
so the perspectives of further investigations are widely discussed.Comment: LaTeX, 37page
Super-tetrahedra and super-algebras
In this paper we give a detailed classification scheme for three-dimensional
quantum zero curvature representation and tetrahedron equations. This scheme
includes both even and odd parity components, the resulting algebras of
observables are either Bose q-oscillators or Fermi oscillators.
Three-dimensional -matrices intertwining variously oriented tensor products
of Bose and Fermi oscillators and satisfying tetrahedron and super-tetrahedron
equations are derived. The 3d->2d compactification reproduces U_q(gl(n|m))
super-algebras and their representation theory.Comment: LaTeX, 27 page
- …