200 research outputs found

    Self-consistent calculation of particle-hole diagrams on the Matsubara frequency: FLEX approximation

    Full text link
    We implement the numerical method of summing Green function diagrams on the Matsubara frequency axis for the fluctuation exchange (FLEX) approximation. Our method has previously been applied to the attractive Hubbard model for low density. Here we apply our numerical algorithm to the Hubbard model close to half filling (ρ=0.40\rho = 0.40), and for T/t=0.03T/t = 0.03, in order to study the dynamics of one- and two-particle Green functions. For the values of the chosen parameters we see the formation of three branches which we associate with the a two-peak structure in the imaginary part of the self-energy. From the imaginary part of the self-energy we conclude that our system is a Fermi liquid (for the temperature investigated here), since ImΣ(k,ω)w2\Sigma(\vec{k},\omega) \approx w^2 around the chemical potential. We have compared our fully self-consistent FLEX solutions with a lower order approximation where the internal Green functions are approximated by free Green functions. These two approches, i.e., the fully selfconsistent and the non-selfconsistent ones give different results for the parameters considered here. However, they have similar global results for small densities.Comment: seven pages, nine figures as ps files. Accepted in Int. J. Modern Phys. C (1997

    Domain Walls in Superfluid 3He-B

    Full text link
    We consider domain walls between regions of superfluid 3He-B in which one component of the order parameter has the opposite sign in the two regions far from one another. We report calculations of the order parameter profile and the free energy for two types of domain wall, and discuss how these structures are relevant to superfluid 3He confined between two surfaces.Comment: 6 pages with 3 figures. Conference proceedings of QSF 2004, Trento, Ital

    Pseudogap Formation in the Symmetric Anderson Lattice Model

    Full text link
    We present self-consistent calculations for the self-energy and magnetic susceptibility of the 2D and 3D symmetric Anderson lattice Hamiltonian, in the fluctuation exchange approximation. At high temperatures, strong f-electron scattering leads to broad quasiparticle spectral functions, a reduced quasiparticle band gap, and a metallic density of states. As the temperature is lowered, the spectral functions narrow and a pseudogap forms at the characteristic temperature TxT_x at which the width of the quasiparticle spectral function at the gap edge is comparable to the renormalized activation energy. For T<<TxT << T_x , the pseudogap is approximately equal to the hybridization gap in the bare band structure. The opening of the pseudogap is clearly apparent in both the spin susceptibility and the compressibility.Comment: RevTeX - 14 pages and 7 figures (available on request), NRL-JA-6690-94-002

    Quasiparticle Band Structure and Density Functional Theory: Single-Particle Excitations and Band Gaps in Lattice Models

    Full text link
    We compare the quasiparticle band structure for a model insulator obtained from the fluctuation exchange approximation (FEA) with the eigenvalues of the corresponding density functional theory (DFT) and local density approximation (LDA). The discontinuity in the exchange-correlation potential for this model is small and the FEA and DFT band structures are in good agreement. In contrast to conventional wisdom, the LDA for this model overestimates the size of the band gap. We argue that this is a consequence of an FEA self-energy that is strongly frequency dependent, but essentially local.Comment: 8 pages, and 5 figure
    corecore