5 research outputs found

    Chiral discrimination in optical trapping and manipulation

    Get PDF
    When circularly polarized light interacts with chiral molecules or nanoscale particles powerful symmetry principles determine the possibility of achieving chiral discrimination, and the detailed form of electrodynamic mechanisms dictate the types of interaction that can be involved. The optical trapping of molecules and nanoscale particles can be described in terms of a forward-Rayleigh scattering mechanism, with trapping forces being dependent on the positioning within the commonly non-uniform intensity beam profile. In such a scheme, nanoparticles are commonly attracted to local potential energy minima, ordinarily towards the centre of the beam. For achiral particles the pertinent material response property usually entails an electronic polarizability involving transition electric dipole moments. However, in the case of chiral molecules, additional effects arise through the engagement of magnetic counterpart transition dipoles. It emerges that, when circularly polarized light is used for the trapping, a discriminatory response can be identified between left- and right-handed polarizations. Developing a quantum framework to accurately describe this phenomenon, with a tensor formulation to correctly represent the relevant molecular properties, the theory leads to exact analytical expressions for the associated energy landscape contributions. Specific results are identified for liquids and solutions, both for isotropic media and also where partial alignment arises due to a static electric field. The paper concludes with a pragmatic analysis of the scope for achieving enantiomer separation by such methods

    ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ эффСктивности Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ управляСмого тСрмораскалывания силикатных стСкол с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄Π° фотоупругости

    Get PDF
    A method for monitoring the development of a separating crack in the process of laser-controlled thermal splitting of silicate glasses is proposed. This method is based on the polarization-optical method (photoelasticity method). The method was developed on the basis of numerical modeling and experimental studies of the process using a polarized light source and a video camera with an analyzer. During the cutting process, a source of polarized light creates a stream, which, passing through silicate glass, enters a video camera with an analyzer. Analysis of the parameters of polarized light in the area of material processing allows us to drawa conclusion about the stable development or absence of the formation of a separating microcrack. Based on the information obtained, it is necessary to dynamically make corrections to the technological parameters of the laser thermal splitting process for separating silicate glasses to maintain the value of thermoelastic stresses necessary for the formation of a microcrack, or transmit a command to interrupt the process.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ контроля развития Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‰Π΅ΠΉ Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½Ρ‹ Π² процСссС Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ управляСмого тСрмораскалывания силикатных стСкол, Π² основС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π»Π΅ΠΆΠΈΡ‚ поляризационно-оптичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ (ΠΌΠ΅Ρ‚ΠΎΠ΄ фотоупругости). ΠœΠ΅Ρ‚ΠΎΠ΄ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ Π½Π° Π±Π°Π·Π΅ числСнного модСлирования ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований процСсса с использованиСм источника поляризованного свСта ΠΈ Π²ΠΈΠ΄Π΅ΠΎΠΊΠ°ΠΌΠ΅Ρ€Ρ‹ с Π°Π½Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠΌ. Π’ΠΎ врСмя процСсса Ρ€Π΅Π·ΠΊΠΈ источник поляризованного свСта создаСт ΠΏΠΎΡ‚ΠΎΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ, проходя Ρ‡Π΅Ρ€Π΅Π· силикатноС стСкло, ΠΏΠΎΠΏΠ°Π΄Π°Π΅Ρ‚ Π² Π²ΠΈΠ΄Π΅ΠΎΠΊΠ°ΠΌΠ΅Ρ€Ρƒ с Π°Π½Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠΌ. Анализ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² поляризованного свСта Π² области ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° позволяСт ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄ ΠΎΠ± устойчивом Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ ΠΈΠ»ΠΈ отсутствии образования Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‰Π΅ΠΉ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€Π΅Ρ‰ΠΈΠ½Ρ‹. По ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ динамичСски Π²Π½ΠΎΡΠΈΡ‚ΡŒ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΡŽ Π² тСхнологичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ процСсса Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ тСрмораскалывания раздСлСния силикатных стСкол для поддСрТания значСния Ρ‚Π΅Ρ€ΠΌΠΎΡƒΠΏΡ€ΡƒΠ³ΠΈΡ… напряТСний, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Ρ… для формирования ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€Π΅Ρ‰ΠΈΠ½Ρ‹, Π»ΠΈΠ±ΠΎ ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Ρ‚ΡŒ ΠΊΠΎΠΌΠ°Π½Π΄Ρƒ прСрывания процСсса
    corecore