21 research outputs found

    The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer

    Get PDF
    AbstractIn a reporter gene assay, cationic liposomes containing the cationic lipid 3β-(N-(N′,N′-dimethylaminoethane)carbamoyl)cholesterol (DC-Chol) and a neutral phospholipid dioleoylphosphatidylethanolamine (DOPE) showed high transfection activity. DNA/liposome complex which contained low amount of liposomes could bind to the cell surface but failed to transfect the cells. We have designed a two-step protocol to examine this phenomenon in more detail. A431 human cells were incubated on ice (pulse) with DNA complexed to a low level of cationic liposomes. The cells were washed and incubated at 37° C (chase) with or without free cationic liposomes of various composition (helper liposomes). Only liposomes enriched with DOPE showed helper activity; liposomes containing dioleoylphosphatidylcholine (DOPC), a structural analog of DOPE, had no helper activity. The delivery was inhibited by the lysosomotropic agent chloroquine and was optimal if the helper liposome chase was initiated immediately after the pulse. An endocytosis model of DNA delivery by cationic liposomes is proposed in which the principal function of the chase liposomes is to destabilize the endosome membrane and allow the release of DNA into the cytosol. This model is consistent with the known activity of DOPE to assume non-bilayer structures, hence destabilizing the endosome membrane

    CD8 +

    No full text

    High subclonal fraction of 17p deletion is associated with poor prognosis in multiple myeloma

    No full text
    Deletions of chromosome 17p (del17p) that span the TP53 gene are associated with poor outcome in multiple myeloma (MM), but the prognostic value of del17p cancer clonal fraction (CCF) remains unclear. We applied uniform cytogenetic assessments in a large cohort of newly diagnosed MM (NDMM) patients carrying varying levels of del17p. Incremental CCF change was associated with shorter survival, and a robust CCF threshold of 0.55 was established in discovery and replication data sets. After stratification on the 0.55-CCF threshold, high-risk patients had statistically significantly poorer outcomes compared with low-risk patients (median progression-free survival [PFS] and overall survival [OS], 14 and 32 vs 23.1 and 76.2 months, respectively). Analyses of a third data set comprising whole-exome sequencing data from NDMM patients identified presence of TP53 deletions/mutations as a necessary requirement for high-risk stratification in addition to exceeding the del17p CCF threshold. Meta-analysis conducted across 3 data sets confirmed the robustness of the CCF threshold for PFS and OS. Our analyses demonstrate the feasibility of fluorescence in situ hybridization– and sequencing-based methods to identify TP53 deletions, estimate CCF, and establish that both CCF threshold of 0.55 and presence of TP53 deletion are necessary to identify del17p-carrying NDMM patients with poor prognosis. © 2019 by The American Society of Hematolog
    corecore