3,117 research outputs found

    Toward an architecture for quantum programming

    Full text link
    It is becoming increasingly clear that, if a useful device for quantum computation will ever be built, it will be embodied by a classical computing machine with control over a truly quantum subsystem, this apparatus performing a mixture of classical and quantum computation. This paper investigates a possible approach to the problem of programming such machines: a template high level quantum language is presented which complements a generic general purpose classical language with a set of quantum primitives. The underlying scheme involves a run-time environment which calculates the byte-code for the quantum operations and pipes it to a quantum device controller or to a simulator. This language can compactly express existing quantum algorithms and reduce them to sequences of elementary operations; it also easily lends itself to automatic, hardware independent, circuit simplification. A publicly available preliminary implementation of the proposed ideas has been realized using the C++ language.Comment: 23 pages, 5 figures, A4paper. Final version accepted by EJPD ("swap" replaced by "invert" for Qops). Preliminary implementation available at: http://sra.itc.it/people/serafini/quantum-computing/qlang.htm

    Sub-picosecond compression by velocity bunching in a photo-injector

    Get PDF
    We present an experimental evidence of a bunch compression scheme that uses a traveling wave accelerating structure as a compressor. The bunch length issued from a laser-driven radio-frequency electron source was compressed by a factor >3 using an S-band traveling wave structure located immediately downstream from the electron source. Experimental data are found to be in good agreement with particle tracking simulations.Comment: 19 pages, 9 figures, submitted to Phys. Rev. Spec. Topics A&

    Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    Get PDF
    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components

    An analytical and experimental investigation of resistojet plumes

    Get PDF
    As a part of the electrothermal propulsion plume research program at the NASA Lewis Research Center, efforts have been initiated to analytically and experimentally investigate the plumes of resistojet thrusters. The method of G.A. Simons for the prediction of rocket exhaust plumes is developed for the resistojet. Modifications are made to the source flow equations to account for the increased effects of the relatively large nozzle boundary layer. Additionally, preliminary mass flux measurements of a laboratory resistojet using CO2 propellant at 298 K have been obtained with a cryogenically cooled quartz crystal microbalance (QCM). There is qualitative agreement between analysis and experiment, at least in terms of the overall number density shape functions in the forward flux region

    An analytical and experimental comparison of the flow field of an advanced swept turboprop

    Get PDF
    An argon ion laser velocimeter with four beams was used to measure the detailed flow-field of an advanced eight blade propeller with 45% of tip sweep in an 8x6 foot supersonic wind tunnel. Data were obtained at a free stream Mach number of 0.8, the design advance ratio of 3.06 and a power coefficient of 1.8. Data are presented for inlet flow, exit flow, flow within the blades and flow slightly outside the blade tips. The data are compared to a lifting line theory. In general, the results of the comparison are considered favorable
    • …
    corecore