5 research outputs found
Beam gas curtain monitor: Vacuum studies for LHC integration and operation
A beam gas curtain (BGC) monitor has been designed to obtain information about the relative position between the LHC proton beam and the hollow electron lens electron beam through a minimally invasive process. Its working principle relies on intersecting the path of both beams with a supersonic gas curtain, introduced transversely into the LHC beamline, to produce a fluorescence signal. As an intermediate project stage (phase II), a preliminary version of the BGC monitor has been installed into the LHC beamline. To ensure the successful integration of the monitor and subsequent operation under LHC ultrahigh vacuum conditions, a series of vacuum studies have been performed. These can be classified as follows: An off-line laboratory test campaign, to assess BGC behavior during pump down and gas injections; simulations and analytical calculations, to evaluate BGC behavior and estimate the impact of its installation and operation in the LHC. This document will briefly present the off-line tests campaign, followed by a more extensive description of the simulations performed
Mechanical Comparison of Short Models of Nb Sn Low- Quadrupole for the Hi-Lumi LHC
MQXF is the Nb 3 Sn Low-β quadrupole magnet that the HL-LHC project is planning to install in the LHC interaction regions in 2026 to increase the LHC integrated luminosity. The magnet will be fabricated in two different lengths: 4.2 m for MQXFA, built in the US by the Accelerator Upgrade Project (AUP), and 7.15 m for MQXFB, fabricated by CERN. In order to qualify the magnet design and characterize its performance with different conductors, cable geometries and pre-load configurations, five short model magnets, called MQXFS, were fabricated, assembled and tested. We compare the mechanical behavior of short model magnets using experimental data and new numerical models that take into account the measured coil sizes as a function of position.-MQXF is the Nb3Sn Low-β quadrupole magnet that the HL-LHC project is planning to install in the LHC interaction regions in 2026 to increase the LHC integrated luminosity. The magnet will be fabricated in two different lengths: 4.2 m for MQXFA, built in the US by the Accelerator Upgrade Project (AUP), and 7.15 m for MQXFB, fabricated by CERN. In order to qualify the magnet design and characterize its performance with different conductors, cable geometries and pre-load configurations, five short model magnets, called MQXFS, were fabricated, assembled and tested. We compare the mechanical behavior of short model magnets using experimental data and new numerical models that take into account the measured coil sizes as a function of position
Optimisation of a gas jet-based beam profile monitor for high intensity electron beams
A beam profile monitor using gas jet technology is being designed and manufactured at the Cockcroft Institute for high intensity electron beams. It generates a thin, supersonic gas sheet that traverses the beam at a 45-degree orientation and measures the beam-induced fluorescence interactions to produce a 2D beam profile image. The gas sheet acts similar to a scintillating screen, but remains non-invasive. This contribution summarises the method developed towards optimising the injection of a gas jet monitor for the example use-case of the Hollow Electron Lens. A multi-objective genetic algorithm is used with a Monte-Carlo particle tracking simulation to optimise the geometric features of the jet injection chambers. The algorithm optimises for several key features of the jet that will improve it as a diagnostic tool. Specifically, at the point of interaction, the jet’s density, uniformity and geometric dimensions are considered. The work developed in this contribution is not limited to diagnostics and can be expanded upon in other disciplines such as plasma wakefield gas injections
Imaging a high-power hollow electron beam non-invasively with a gas-jet-based beam profile monitor
The Hollow Electron Lens (HEL) was proposed to actively remove the beam halo of the proton beam for the HL-LHC upgrade. Currently, the concept of generating such an electron beam is being tested in a dedicated Electron Beam Test Stand (EBTS) at CERN. It currently produces a hollow electron beam with 7 keV energy and 0.4 A current 25 us pulsed with 2 Hz which will be confined in a strong solenoid field. A gas curtain-based beam profile monitor was developed to characterize the beam non-invasively during operation. It injects a directional gas sheet at 45 degrees to interact with the electron beam. Gas particles are excited and emit fluorescent photons which are collected by an intensified camera system. This allows the reconstruction of the profile of the hollow electron beam.This contribution presents the design of the monitor and discusses the initial results obtained with a hollow electron beam at the EBTS