19 research outputs found

    Abnormal social reward processing in autism as indexed by pupillary responses to happy faces

    Get PDF
    Background: Individuals with Autism Spectrum Disorders (ASD) typically show impaired eye contact during social interactions. From a young age, they look less at faces than typically developing (TD) children and tend to avoid direct gaze. However, the reason for this behavior remains controversial; ASD children might avoid eye contact because they perceive the eyes as aversive or because they do not find social engagement through mutual gaze rewarding. Methods: We monitored pupillary diameter as a measure of autonomic response in children with ASD (n = 20, mean age = 12.4) and TD controls (n = 18, mean age = 13.7) while they looked at faces displaying different emotions. Each face displayed happy, fearful, angry or neutral emotions with the gaze either directed to or averted from the subjects. Results: Overall, children with ASD and TD controls showed similar pupillary responses; however, they differed significantly in their sensitivity to gaze direction for happy faces. Specifically, pupillary diameter increased among TD children when viewing happy faces with direct gaze as compared to those with averted gaze, whereas children with ASD did not show such sensitivity to gaze direction. We found no group differences in fixation that could explain the differential pupillary responses. There was no effect of gaze direction on pupil diameter for negative affect or neutral faces among either the TD or ASD group. Conclusions: We interpret the increased pupillary diameter to happy faces with direct gaze in TD children to reflect the intrinsic reward value of a smiling face looking directly at an individual. The lack of this effect in children with ASD is consistent with the hypothesis that individuals with ASD may have reduced sensitivity to the reward value of social stimuli

    Imaging episodic memory during development and childhood epilepsy

    No full text
    Abstract Epilepsy affects 2.2 million adults in the USA, with 1 in 26 people developing epilepsy at some point in their lives. Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy as medial structures, and the hippocampus in particular, are prone to generating seizures. Selective anterior temporal resection (which removes the hippocampus) is the most effective intractable TLE treatment, but given the critical role of the mesial temporal lobe in memory functioning, resection can have negative effects on this crucial cognitive skill. To minimize the adverse impact of temporal lobe surgery on memory functioning, reliable pre-surgical guides are needed. Clinical functional magnetic resonance imaging (fMRI) provides reliable, noninvasive guidance of language functioning and plays a growing role in the pre-surgical evaluation for epilepsy patients; however, localization of memory function in children with epilepsy using fMRI has not been established. Aside from the lack of neuroimaging memory studies in children with TLE, studies of typical development are limited. This review will focus on the functional anatomy of memory systems throughout development, with a focus on TLE. TLE provides the ideal model from which to understand memory function and the limits of plasticity and compensation/reorganization throughout development

    Impact of development and recent-onset epilepsy on language dominance

    No full text
    OBJECTIVE: Reorganization of the language network from typically left-lateralized frontotemporal regions to bilaterally distributed or right-lateralized networks occurs in anywhere from 25%-30% of patients with focal epilepsy. In patients who have been recently diagnosed with epilepsy, an important question remains as to whether it is the presence of seizures or the underlying epilepsy etiology that leads to atypical language representations. This question becomes even more interesting in pediatric samples, where the typical developmental processes of the language network may confer more variability and plasticity in the language network. We assessed a carefully selected cohort of children with recent-onset epilepsy to examine whether it is the effects of seizures or their underlying cause that leads to atypical language lateralization. METHODS: We used functional magnetic resonance imaging (fMRI) to compare language laterality in children with recently diagnosed focal unaware epilepsy and age-matched controls. Age at epilepsy onset (age 4 to 6 years vs age 7 to 12 years) was also examined to determine if age at onset influenced laterality. RESULTS: The majority of recent-onset patients and controls exhibited left-lateralized language. There was a significant interaction such that the relationship between epilepsy duration and laterality differed by age at onset. In children with onset after age 6, a longer duration of epilepsy was associated with less left-lateralized language dominance. In contrast, in children with onset between 4 and 6 years of age, a longer duration of epilepsy was not associated with less left language dominance. SIGNIFICANCE: Our results demonstrate that although language remained largely left-lateralized in children recently diagnosed with epilepsy, the impact of seizure duration depended on age at onset, indicating that the timing of developmental and disease factors are important in determining language dominance

    Resting-state functional MRI for motor cortex mapping in childhood-onset focal epilepsy

    No full text
    BACKGROUND AND PURPOSE: Task-based functional MRI (fMRI) mapping of the motor function prior to epilepsy surgery has limitations in children with epilepsy. We present a data-driven method to automatically delineate the motor cortex using task-free, resting-state fMRI (rsfMRI) data. METHODS: We used whole-brain rsfMRI for independent component analysis (ICA). A template matching process with Discriminability Index-based Component Identification score was used for each participant to select and combine motor ICA components in their native brain space, resulting in a whole-brain ICA Motor Map (wIMM). We validated wIMM by comparing individual results with bilateral finger-tapping motor task fMRI activation, and evaluated its reproducibility in controls. RESULTS: Data from 64 patients and 12 controls were used to generate group wIMM maps. The hit rate between wIMM and motor task activation ranged from 60% to 79% across all participants. Sensitivity of wIMM for capturing the task activation peak was 87.5% among 32 patients and 100% in 12 controls with available motor task results. We also showed high similarity in repeated runs in controls. CONCLUSIONS: Our results show the sensitivity and reproducibility of an automated motor mapping method based on ICA analysis of rsfMRI in children with epilepsy. The ICA maps may provide different, but useful, information than task fMRI. Future studies will expand our method to mapping other brain functions, and may lead to a surgical planning tool for patients who cannot perform task fMRI and help predict their postsurgical function

    The role of executive functioning in memory performance in pediatric focal epilepsy.

    No full text
    OBJECTIVE: Learning and memory are essential for academic success and everyday functioning, but the pattern of memory skills and its relationship to executive functioning in children with focal epilepsy is not fully delineated. We address a gap in the literature by examining the relationship between memory and executive functioning in a pediatric focal epilepsy population. METHODS: Seventy children with focal epilepsy and 70 typically developing children matched on age, intellectual functioning, and gender underwent neuropsychological assessment, including measures of intelligence (WASI/DAS), as well as visual (CMS Dot Locations) and verbal episodic memory (WRAML Story Memory and CVLT-C). Executive functioning was measured directly (WISC-IV Digit Span Backward; CELF-IV Recalling Sentences) and by parent report (Behavior Rating Inventory of Executive Function (BRIEF)). RESULTS: Children with focal epilepsy had lower delayed free recall scores than controls across visual and verbal memory tasks (p = 0.02; partial η(2) = .12). In contrast, recognition memory performance was similar for patients and controls (p = 0.36; partial η(2) = .03). Children with focal epilepsy demonstrated difficulties in working memory (p = 0.02; partial η(2) = .08) and planning/organization (p = 0.02) compared to controls. Working memory predicted 9–19% of the variance in delayed free recall for verbal and visual memory; organization predicted 9–10% of the variance in verbal memory. Patients with both left and right focal epilepsy demonstrated more difficulty on verbal versus visual tasks (p = 0.002). Memory performance did not differ by location of seizure foci (temporal vs. extra-temporal, frontal vs. extra-frontal). SIGNIFICANCE: Children with focal epilepsy demonstrated memory ability within age-level expectations, but delayed free recall was inefficient compared to typically developing controls. Memory difficulties were not related to general cognitive impairment or seizure localization. Executive functioning accounted for significant variance in memory performance, suggesting that poor executive control negatively influences memory retrieval
    corecore