12 research outputs found

    P62-positive aggregates are homogenously distributed in the myocardium and associated with the type of mutation in genetic cardiomyopathy

    Get PDF
    © 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd Genetic cardiomyopathy is caused by mutations in various genes. The accumulation of potentially proteotoxic mutant protein aggregates due to insufficient autophagy is a possible mechanism of disease development. The objective of this study was to investigate the distribution in the myocardium of such aggregates in relation to specific pathogenic genetic mutations in cardiomyopathy hearts. Hearts from 32 genetic cardiomyopathy patients, 4 non-genetic cardiomyopathy patients and 5 controls were studied. Microscopic slices from an entire midventricular heart slice were stained for p62 (sequestosome-1, marker for aggregated proteins destined for autophagy). The percentage of cardiomyocytes with p62 accumulation was higher in cardiomyopathy hearts (median 3.3%) than in healthy controls (0.3%; P <.0001). p62 accumulation was highest in the desmin (15.6%) and phospholamban (7.2%) groups. P62 accumulation was homogeneously distributed in the myocardium. Fibrosis was not associated with p62 accumulation in subgroup analysis of phospholamban hearts. In conclusion, accumulation of p62-positive protein aggregates is homogeneously distributed in the myocardium independently of fibrosis distribution and associated with desmin and phospholamban cardiomyopathy. Proteotoxic protein accumulation is a diffuse process in the myocardium while a more localized second hit, such as local strain during exercise, might determine whether this leads to regional myocyte decay

    До мінералогії сезонних сульфатів мису Фіолент (Південно-Західний Крим)

    Get PDF
    Комплексом методів вивчено колекцію зразків вторинних мінералів одного з узбережних відслонень зони окиснення сульфідної мінералізації мису Фіолент (Південно-Західний Крим). Установлено, що всі досліджені зразки є полімінеральними утвореннями, в яких одночасно співіснують у різних пропорціях сульфати Mg, Al, Fe²⁺, Fe³⁺, Ca тощо: пікерингіт (найпоширеніший), пікерингіт залізистий, гексагідрит, старкіїт, епсоміт, алуноген, ботріоген, копіапіт, ярозит, гіпс та ін. Старкіїт і ботріоген у Криму виявлено вперше.The collection of secondary minerals from one of littoral occurrences of sulphide zone of oxidation of the Fiolent Cape (South-Western Crimea) is studied by different methods. It was established that all studied samples were polymineral formations which consisted of sulphates of Mg, Al, Fe²⁺, Fe³⁺, Ca, etc. in different proportions: pickeringite (the most wide-spread), ferropickeringite, hexahydrite, starkeyite, epsomite, alunogen, botryogen, copiapite, jarosite, gypsum etc. Starkeyite and botryogen are detected in the Crimea for the first time

    Distinct fibrosis pattern in desmosomal and phospholamban mutation carriers in hereditary cardiomyopathies

    Get PDF
    Background: Desmosomal and phospholamban (PLN) mutations are associated with arrhythmogenic cardiomyopathy. Ultimately, most cardiomyopathic hearts develop significant cardiac fibrosis. // Objective: To compare the fibrosis patterns of desmosomal and p. Arg14del PLN–associated cardiomyopathies with the pattern in hearts with other hereditary cardiomyopathies. // Methods: A midventricular transversal slice was obtained from hearts of 30 patients with a cardiomyopathy with a known underlying mutation and from 8 controls. Fibrosis and fatty changes were quantitatively analyzed using digital microscopy. // Results: Hearts from patients with desmosomal mutations (n = 6) showed fibrosis and fibrofatty replacement in the left ventricular (LV) outer myocardium, mainly in the posterolateral wall, and in the right ventricle. A similar phenotype, but with significantly more severe fibrotic changes in the LV, was found in the PLN mutation group (n = 8). Cardiomyopathies associated with lamin A/C (n = 5), sarcomeric (n = 8), and desmin (n = 3) mutations all showed a different pattern from that of the desmosomal and PLN mutation carriers. The posterolateral LV wall appeared to be the most discriminative area with fibrosis and fatty changes predominantly at the outer compact myocardium in 13 of 14 hearts with desmosomal and PLN mutations (93%), in 0 of 13 hearts with lamin A/C and sarcomeric mutations (0%), and in 1 of 3 desminopathic hearts (33%) (P < .001). // Conclusion: Desmosomal- and PLN-associated cardiomyopathies have a fibrosis pattern distinct from the patterns in other hereditary cardiomyopathies. The posterolateral LV wall appeared to be the most discriminative region between mutation groups. These results may provide a roadmap for cardiac imaging interpretation and may help in further unraveling disease mechanisms

    Involvement of the opportunistic pathogen Aspergillus tubingensis in osteomyelitis of the maxillary bone: A case report

    No full text
    Background: Aspergillus tubingensis is a black Aspergillus belonging to the Aspergillus section Nigri, which includes species that morphologically resemble Aspergillus niger. Recent developments in species determination have resulted in clinical isolates presumed to be Aspergillus niger being reclassified as Aspergillus tubingensis by sequencing. We present a report of a patient with an osteomyelitis of the maxillary bone with a probable invasive Aspergillus tubingensis infection.Case presentation: We describe an immune compromised patient suffering from osteomyelitis of the maxillary bone after tooth extraction. The osteomyelitis probably resulted in dentogenic pansinusitis presenting as an acute ethmoiditis. Histologic examination of biopsy samples showed osteomyelitis, and inflammation of the surrounding connective tissue. Cultures of the alveolar wound grew Aspergillus tubingensis. The patient was treated with liposomal amphoterocin B, which was changed to oral treatment with voriconazole based on susceptibility testing (MIC for voriconazole was 1 μg/ml).Conclusion: This case shows that Aspergillus tubingensis may have the potential to cause severe invasive infections in immunocompromised hosts. A larger proportion of Aspergillus tubingensis isolates are less susceptible to azoles compared to Aspergillus niger. Therefore, correct species identification and susceptibility testing is crucial for the choice of anti-fungal treatment, screening of azole resistance, and characterization of the pathogenic potential of the various species within Aspergillus section Nigri. © 2013 Bathoorn et al.; licensee BioMed Central Ltd

    P62-positive aggregates are homogenously distributed in the myocardium and associated with the type of mutation in genetic cardiomyopathy

    Get PDF
    Genetic cardiomyopathy is caused by mutations in various genes. The accumulation of potentially proteotoxic mutant protein aggregates due to insufficient autophagy is a possible mechanism of disease development. The objective of this study was to investigate the distribution in the myocardium of such aggregates in relation to specific pathogenic genetic mutations in cardiomyopathy hearts. Hearts from 32 genetic cardiomyopathy patients, 4 non-genetic cardiomyopathy patients and 5 controls were studied. Microscopic slices from an entire midventricular heart slice were stained for p62 (sequestosome-1, marker for aggregated proteins destined for autophagy). The percentage of cardiomyocytes with p62 accumulation was higher in cardiomyopathy hearts (median 3.3%) than in healthy controls (0.3%; P <.0001). p62 accumulation was highest in the desmin (15.6%) and phospholamban (7.2%) groups. P62 accumulation was homogeneously distributed in the myocardium. Fibrosis was not associated with p62 accumulation in subgroup analysis of phospholamban hearts. In conclusion, accumulation of p62-positive protein aggregates is homogeneously distributed in the myocardium independently of fibrosis distribution and associated with desmin and phospholamban cardiomyopathy. Proteotoxic protein accumulation is a diffuse process in the myocardium while a more localized second hit, such as local strain during exercise, might determine whether this leads to regional myocyte decay
    corecore