542 research outputs found

    Pump-Enhanced Continuous-Wave Magnetometry using Nitrogen-Vacancy Ensembles

    Get PDF
    Ensembles of nitrogen-vacancy centers in diamond are a highly promising platform for high-sensitivity magnetometry, whose efficacy is often based on efficiently generating and monitoring magnetic-field dependent infrared fluorescence. Here we report on an increased sensing efficiency with the use of a 532-nm resonant confocal cavity and a microwave resonator antenna for measuring the local magnetic noise density using the intrinsic nitrogen-vacancy concentration of a chemical-vapor deposited single-crystal diamond. We measure a near-shot-noise-limited magnetic noise floor of 200 pT/Hz\sqrt{\text{Hz}} spanning a bandwidth up to 159 Hz, and an extracted sensitivity of approximately 3 nT/Hz\sqrt{\text{Hz}}, with further enhancement limited by the noise floor of the lock-in amplifier and the laser damage threshold of the optical components. Exploration of the microwave and optical pump-rate parameter space demonstrates a linewidth-narrowing regime reached by virtue of using the optical cavity, allowing an enhanced sensitivity to be achieved, despite an unoptimized collection efficiency of <2 %, and a low nitrogen-vacancy concentration of about 0.2 ppb.Comment: 10 pages and 5 figure

    Nitrogen-Vacancy Ensemble Magnetometry Based on Pump Absorption

    Get PDF
    We demonstrate magnetic field sensing using an ensemble of nitrogen-vacancy centers by recording the variation in the pump-light absorption due to the spin-polarization dependence of the total ground state population. Using a 532 nm pump laser, we measure the absorption of native nitrogen-vacancy centers in a chemical vapor deposited diamond placed in a resonant optical cavity. For a laser pump power of 0.4 W and a cavity finesse of 45, we obtain a noise floor of \sim 100 nT/Hz\sqrt{\textrm{Hz}} spanning a bandwidth up to 125 Hz. We project a photon shot-noise-limited sensitivity of \sim 1 pT/Hz\sqrt{\textrm{Hz}} by optimizing the nitrogen-vacancy concentration and the detection method.Comment: 7 pages and 5 figure

    Optimal Tracking Current Control of Switched Reluctance Motor Drives Using Reinforcement Q-learning Scheduling

    Get PDF
    In this paper, a novel Q-learning scheduling method for the current controller of switched reluctance motor (SRM) drive is investigated. Q-learning algorithm is a class of reinforcement learning approaches that can find the best forward-in-time solution of a linear control problem. This paper will introduce a new scheduled-Q-learning algorithm that utilizes a table of Q-cores that lies on the nonlinear surface of a SRM model without involving any information about the model parameters to track the reference current trajectory by scheduling infinite horizon linear quadratic trackers (LQT) handled by Q-learning algorithms. Additionally, a linear interpolation algorithm is proposed to guide the transition of the LQT between trained Q-cores to ensure a smooth response as state variables evolve on the nonlinear surface of the model. Lastly, simulation and experimental results are provided to validate the effectiveness of the proposed control scheme.Comment: 8 pages, 10 figure

    Constraints for Time-Multiplexed Structured Light with a Hand-held Camera

    Get PDF
    Multi-frame structured light in projector-camera systems affords high-density and non-contact methods of 3D surface reconstruction. However, they have strict setup constraints which can become expensive and time-consuming. Here, we investigate the conditions under which a projective homography can be used to compensate for small perturbations in pose caused by a hand-held camera. We synthesize data using a pinhole camera model and use it to determine the average 2D reprojection error per point correspondence. This error map is grouped into regions with specified upper-bounds to classify which regions produce sufficiently minimal error to be considered feasible for a structured-light projector-camera system with a hand-held camera. Empirical results demonstrate that a sub-pixel reprojection accuracy is achievable with a feasible geometric constraint

    Wall effects on the transportation of a cylindrical particle in power-law fluids

    Get PDF
    The present work deals with the numerical calculation of the Stokes-type drag undergone by a cylindrical particle perpendicularly to its axis in a power-law fluid. In unbounded medium, as all data are not available yet, we provide a numerical solution for the pseudoplastic fluid. Indeed, the Stokes-type solution exists because the Stokes’ paradox does not take place anymore. We show a high sensitivity of the solution to the confinement, and the appearance of the inertia in the proximity of the Newtonian case, where the Stokes’ paradox takes place. For unbounded medium, avoiding these traps, we show that the drag is zero for Newtonian and dilatant fluids. But in the bounded one, the Stokes-type regime is recovered for Newtonian and dilatant fluids. We give also a physical explanation of this effect which is due to the reduction of the hydrodynamic screen length, for pseudoplastic fluids. Once the solution of the unbounded medium has been obtained, we give a solution for the confined medium numerically and asymptotically. We also highlight the consequence of the confinement and the backflow on the settling velocity of a fiber perpendicularly to its axis in a slit. Using the dynamic mesh technique, we give the actual transportation velocity in a power-law “Poiseuille flow”, versus the confinement parameter and the fluidity index, induced by the hydrodynamic interactions

    Deep Injective Prior for Inverse Scattering

    Full text link
    In electromagnetic inverse scattering, the goal is to reconstruct object permittivity using scattered waves. While deep learning has shown promise as an alternative to iterative solvers, it is primarily used in supervised frameworks which are sensitive to distribution drift of the scattered fields, common in practice. Moreover, these methods typically provide a single estimate of the permittivity pattern, which may be inadequate or misleading due to noise and the ill-posedness of the problem. In this paper, we propose a data-driven framework for inverse scattering based on deep generative models. Our approach learns a low-dimensional manifold as a regularizer for recovering target permittivities. Unlike supervised methods that necessitate both scattered fields and target permittivities, our method only requires the target permittivities for training; it can then be used with any experimental setup. We also introduce a Bayesian framework for approximating the posterior distribution of the target permittivity, enabling multiple estimates and uncertainty quantification. Extensive experiments with synthetic and experimental data demonstrate that our framework outperforms traditional iterative solvers, particularly for strong scatterers, while achieving comparable reconstruction quality to state-of-the-art supervised learning methods like the U-Net.Comment: 13 pages, 11 figure

    Blessing of dimensionality at the edge

    Full text link
    In this paper we present theory and algorithms enabling classes of Artificial Intelligence (AI) systems to continuously and incrementally improve with a-priori quantifiable guarantees - or more specifically remove classification errors - over time. This is distinct from state-of-the-art machine learning, AI, and software approaches. Another feature of this approach is that, in the supervised setting, the computational complexity of training is linear in the number of training samples. At the time of classification, the computational complexity is bounded by few inner product calculations. Moreover, the implementation is shown to be very scalable. This makes it viable for deployment in applications where computational power and memory are limited, such as embedded environments. It enables the possibility for fast on-line optimisation using improved training samples. The approach is based on the concentration of measure effects and stochastic separation theorems and is illustrated with an example on the identification faulty processes in Computer Numerical Control (CNC) milling and with a case study on adaptive removal of false positives in an industrial video surveillance and analytics system
    corecore