4 research outputs found

    β<sup>3</sup>-tripeptides act as sticky ends to self-assemble into a bioscaffold

    No full text
    Peptides comprised entirely of β3-amino acids, commonly referred to as β-foldamers, have been shown to self-assemble into a range of materials. Previously, β-foldamers have been functionalised via various side chain chemistries to introduce function to these materials without perturbation of the self-assembly motif. Here, we show that insertion of both rigid and flexible molecules into the backbone structure of the β-foldamer did not disturb the self-assembly, provided that the molecule is positioned between two β3-tripeptides. These hybrid β3-peptide flanked molecules self-assembled into a range of structures. α-Arginlyglycylaspartic acid (RGD), a commonly used cell attachment motif derived from fibronectin in the extracellular matrix, was incorporated into the peptide sequence in order to form a biomimetic scaffold that would support neuronal cell growth. The RGD-containing sequence formed the desired mesh-like scaffold but did not encourage neuronal growth, possibly due to over-stimulation with RGD. Mixing the RGD peptide with a β-foldamer without the RGD sequence produced a well-defined scaffold that successfully encouraged the growth of neurons and enabled neuronal electrical functionality. These results indicate that β3-tripeptides can form distinct self-assembly units separated by a linker and can form fibrous assemblies. The linkers within the peptide sequence can be composed of a bioactive α-peptide and tuned to provide a biocompatible scaffold

    A two-dimensional metallosupramolecular framework design based on coordination crosslinking of helical oligoamide nanorods

    Get PDF
    Spontaneous formation of nanostructured materials of defined structure and morphology is a crucial milestone toward realizing true bottom-up nanofabrication. Supramolecular recognition offers unparalleled specificity, selectivity and geometric flexibility to design hierarchical nanostructures. However, competition between similar binding motifs and the dynamic nature of the attachment imposes a severe limitation on the complexity of the achievable structures. Here we outline a design based on two distinct binding motifs in a supramolecular fibrous assembly to realize a metallosupramolecular framework (MSF). Controlled geometries were achieved by one-dimensional supramolecular assembly of substituted oligoamide units. The assembly of the monomers yields nanorods of sub-nanometer diameter and lengths in the 100 μm range. Addition of Cu2+ led to the formation of well aligned two-dimensional arrays on mica surface. Vibrational spectroscopy confirmed that the backbone amide moieties are not affected by metal addition. XPS and NEXAFS results suggest that Cu(II) is reduced in the process to a mixture of Cu(I) and Cu(0), likely in an interaction with the amine moiety of the imidazole side chain. Our results indicate that the two dimensional superstructure is based on the formation of polynuclear metal complexes between the oligoamide nanorods, thus the structure is confirmed to be a metallosupramolecular framework
    corecore