23 research outputs found

    Expression of the Tobacco Non-symbiotic Class 1 Hemoglobin Gene Hb1 Reduces Cadmium Levels by Modulating Cd Transporter Expression Through Decreasing Nitric Oxide and ROS Level in Arabidopsis

    Get PDF
    Hemoglobin (Hb) proteins are ubiquitous in plants, and non-symbiotic class 1 hemoglobin (Hb1) is involved in various biotic and abiotic stress responses. Here, the expression of the tobacco (Nicotiana tabacum) hemoglobin gene NtHb1 in Arabidopsis (Arabidopsis thaliana) showed higher cadmium (Cd) tolerance and lower accumulations of Cd, nitric oxide (NO), and reactive oxygen species (ROS) like hydrogen peroxide (H2O2). NtHb1-expressing Arabidopsis exhibited a reduced induction of NO levels in response to Cd, suggesting scavenging of NO by Hb1. In addition, transgenic plants had reduced accumulation of ROS and increased activities of antioxidative enzymes (catalase, superoxide dismutase, and glutathione reductase) in response to Cd. While the expression of the Cd exporters ABC transporter (PDR8) and Ca2+/H+ exchangers (CAXs) was increased, that of the Cd importers iron responsive transporter 1 (IRT1) and P-type 2B Ca2+ ATPase (ACA10) was reduced in response to Cd. When Col-0 plants were treated with the NO donor sodium nitroprusside (SNP) and H2O2, the expression pattern of Cd transporters (PDR8, CAX3, IRT1, and ACA10) was reversed, suggesting that NtHb1 expression decreased the Cd level by regulating the expression of Cd transporters via decreased NO and ROS. Correspondingly, NtHb1-expressing Arabidopsis showed increased Cd export. In summary, the expression of NtHb1 reduces Cd levels by regulating Cd transporter expression via decreased NO and ROS levels in Arabidopsis

    Accessing Information Sources using Ontologies

    Get PDF
    In this paper, we present a system that helps users access various types of information sources using ontologies. An ontology consists of a set of concepts and their relationships in a domain of interests. The system analyzes an ontology provided by a user so that the user can search and browse Wikipedia [1], DBpedia [4], PubMed [5], and the Web by utilizing the information in the ontology. In particular, terms defined in the ontology are mapped to Wikipedia pages and the navigation history of a user is saved so that it can serve as a personalized ontology. In addition, users can create and edit ontologies using the proposed system. We show that the proposed system can be used in an educational environment

    The mechanism of root growth inhibition by the endocrine disruptor bisphenol A (BPA)

    Get PDF
    Bisphenol A (BPA) is a harmful environmental contaminant acting as an endocrine disruptor in animals, but it also affects growth and development in plants. Here, we have elucidated the functional mechanism of root growth inhibition by BPA in Arabidopsis thaliana using mutants, reporter lines and a pharmacological approach. In response to 10 ppm BPA, fresh weight and main root length were reduced, while auxin levels increased. BPA inhibited root growth by reducing root cell length in the elongation zone by suppressing expansin expression and by decreasing the length of the meristem zone by repressing cell division. The inhibition of cell elongation and cell division was attributed to the enhanced accumulation/redistribution of auxin in the elongation zone and meristem zone in response to BPA. Correspondingly, the expressions of most auxin biosynthesis and transporter genes were enhanced in roots by BPA. Taken together, it is assumed that the endocrine disruptor BPA inhibits primary root growth by inhibiting cell elongation and division through auxin accumulation/redistribution in Arabidopsis. This study will contribute to understanding how BPA affects growth and development in plants

    The density and length of root hairs are enhanced in response to cadmium and arsenic by modulating gene expressions involved in fate determination and morphogenesis of root hairs in Arabidopsis

    No full text
    Root hairs are tubular outgrowths that originate from epidermal cells. Exposure of Arabidopsis to cadmium (Cd) and arsenic [arsenite, As(III)] increases root hair density and length. To examine the underlying mechanism, we measured the expression of genes involved in fate determination and morphogenesis of root hairs. Cd and As(III) downregulated TTG1 and GL2 (negative regulators of fate determination) and upregulated GEM (positive regulator), suggesting that root hair fate determination is stimulated by Cd and As(III). Cd and As(III) increased the transcript levels of genes involved in root hair initiation (RHD6 and AXR2) and root hair elongation (AUX1, AXR1, ETR1, and EIN2) except CTR1. DR5::GUS transgenic Arabidopsis showed a higher DR5 expression in the root tip, suggesting that Cd and As(III) increased the auxin content in the root tip. Knockdown of TTG1 in Arabidopsis resulted in increased root hair density and decreased root hair length compared with the control (Col-0) on 1/2 MS media. This phenotype may be attributed to the downregulation of GL2 and CTR1 and upregulation of RHD6. By contrast, gem mutant plants displayed a decrease in root hair density and length with reduced expression of RHD6, AXR2, AUX1, AXR1, ETR1, CTR1, and EIN2. Taken together, our results indicate that fate determination, initiation, and elongation of root hairs are stimulated in response to Cd and As(III) through the modulation of the expression of genes involved in these processes in Arabidopsis

    Mechanism for Higher Tolerance to and Lower Accumulation of Arsenite in NtCyc07-Overexpressing Tobacco

    No full text
    Arsenite [As(III)] is a highly toxic chemical to all organisms. Previously, we reported that the overexpression of NtCyc07 enhanced As(III) tolerance and reduced As(III) accumulation in yeast (Saccharomyces cerevisiae) and tobacco (Nicotiana tabacum). To understand a mechanism for higher As(III) tolerance and lower As(III) accumulation in NtCyc07-overexpressing tobacco, we examined the expression levels of various putative As(III) transporters (aquaporin). The expressions of putative As(III) exporter NIP1;1, PIP1;1, 1;5, 2;1, 2;2, and 2;7 were enhanced, while the expressions of putative As(III) importer NIP3;1, 4;1, and XIP2;1 were decreased, contributing to the reduced accumulation of As(III) in NtCyc07-overexpressing tobacco. In addition, the levels of oxidative stress indicators (H2O2, superoxide and malondialdehyde) were lower, and the activities of antioxidant enzymes (catalase, superoxide dismutase and glutathione reductase) were higher in NtCyc07-tobacco than in the control tobacco. This suggests that the lower oxidative stress in transgenic tobacco may be attributed to the higher activities of antioxidant enzymes and lower As(III) levels. Taken together, the overexpression of NtCyc07 enhances As(III) tolerance by reducing As(III) accumulation through modulation of expressions of putative As(III) transporters in tobacco

    Role of the <i>INDETERMINATE DOMAIN</i> Genes in Plants

    No full text
    The INDETERMINATE DOMAIN (IDD) genes comprise a conserved transcription factor family that regulates a variety of developmental and physiological processes in plants. Many recent studies have focused on the genetic characterization of IDD family members and revealed various biological functions, including modulation of sugar metabolism and floral transition, cold stress response, seed development, plant architecture, regulation of hormone signaling, and ammonium metabolism. In this review, we summarize the functions and working mechanisms of the IDD gene family in the regulatory network of metabolism and developmental processes
    corecore