70 research outputs found

    Effects of warming and eutrophication on coastal phytoplankton production

    Get PDF
    Phytoplankton production in coastal waters influences seafood production and human health and can lead to harmful algal blooms. Water temperature and eutrophication are critical factors affecting phytoplankton production, although the combined effects of warming and nutrient changes on phytoplankton production in coastal waters are not well understood. To address this, phytoplankton production changes in natural waters were investigated using samples collected over eight months, and under 64 different initial conditions, established by combining four different water temperatures (i.e., ambient T, + 2, + 4, and + 6 degrees C), and two different nutrient conditions (i.e., non-enriched and enriched). Under the non-enriched conditions, the effect of warming on phytoplankton production was significantly positive in some months, significantly negative in others, or had no effect. However, under enriched conditions, warming affected phytoplankton production positively in all months except one, when the salinity was as low as 6.5. These results suggest that nutrient conditions can alter the effects of warming on phytoplankton production. Of several parameters, the ratio of initial nitrate concentration to chlorophyll a concentration [NCCA, mu M (pg L-1)(-1))] was one of the most critical factors determining the directionality of the warming effects. In laboratory experiments, when NCCA in the ambient or nutrient-enriched waters was >= 1.2, warming increased or did not change phytoplankton production with one exception; however, when NCCA was < 1.2, warming did not change or decreased production. In the time series data obtained from the coastal waters of four target countries, when NCCA was 1.5 or more, warming increased phytoplankton production, whereas when NCCA was lower than 1.5, warming lowered phytoplankton production, Thus, it is suggested that NCCA could be used as an index for predicting future phytoplankton production changes in coastal waters.11Ysciescopu

    Urine myo-inositol as a novel prognostic biomarker for diabetic kidney disease: a targeted metabolomics study using nuclear magnetic resonance

    Get PDF
    Background As a leading cause of chronic kidney disease, clinical demand for noninvasive biomarkers of diabetic kidney disease (DKD) beyond proteinuria is increasing. Metabolomics is a popular method to identify mechanisms and biomarkers. We investigated urinary targeted metabolomics in DKD patients. Methods We conducted a targeted metabolomics study of 26 urinary metabolites in consecutive patients with DKD stage 1 to 5 (n = 208) and healthy controls (n = 26). The relationships between estimated glomerular filtration rate (eGFR) or urine protein-creatinine ratio (UPCR) and metabolites were evaluated. Multivariate Cox analysis was used to estimate relationships between urinary metabolites and the target outcome, end-stage renal disease (ESRD). C statistics and time-dependent receiver operating characteristics (ROC) were used to assess diagnostic validity. Results During a median 4.5 years of follow-up, 103 patients (44.0%) progressed to ESRD and 65 (27.8%) died. The median fold changes of nine metabolites belonged to monosaccharide and tricarboxylic acid (TCA) cycle metabolites tended to increase with DKD stage. Myo-inositol, choline, and citrates were correlated with eGFR and choline, while mannose and myo-inositol were correlated with UPCR. Elevated urinary monosaccharide and TCA cycle metabolites showed associations with increased morality and ESRD progression. The predictive power of ESRD progression was high, in the order of choline, myo-inositol, and citrate. Although urinary metabolites alone were less predictive than serum creatinine or UPCR, myo-inositol had additive effect with serum creatinine and UPCR. In time-dependent ROC, myo-inositol was more predictive than UPCR of 1-year ESRD progression prediction. Conclusion Myo-inositol can be used as an additive biomarker of ESRD progression in DKD

    Sucrose preferentially promotes expression of OsWRKY7 and OsPR10a to enhance defense response to blast fungus in rice

    Get PDF
    Sucrose controls various developmental and metabolic processes in plants. It also functions as a signaling molecule in the synthesis of carbohydrates, storage proteins, and anthocyanins, as well as in floral induction and defense response. We found that sucrose preferentially induced OsWRKY7, whereas other sugars (such as mannitol, glucose, fructose, galactose, and maltose) did not have the same effect. A hexokinase inhibitor mannoheptulose did not block the effect of sucrose, which is consequently thought to function directly. MG132 inhibited sucrose induction, suggesting that a repressor upstream of OsWRKY7 is degraded by the 26S proteasome pathway. The 3-kb promoter sequence of OsWRKY7 was preferentially induced by sucrose in the luciferase system. Knockout mutants of OsWRKY7 were more sensitive to the rice blast fungus Magnaporthe oryzae, whereas the overexpression of OsWRKY7 enhanced the resistance, indicating that this gene is a positive regulator in the plant defense against this pathogen. The luciferase activity driven by the OsPR10a promoter was induced by OsWRKY7 and this transcription factor bound to the promoter region of OsPR10a, suggesting that OsWRKY7 directly controls the expression of OsPR10a. We conclude that sucrose promotes the transcript level of OsWRKY7, thereby increasing the expression of OsPR10a for the defense response in rice

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Antimicrobial Activities of Propolis in Poloxamer Based Topical Gels

    No full text
    Propolis contains a group of compounds with various activities. However, their low solubility is a drawback for the development of pharmaceutical formulations. In this study, poloxamers as a solubilizer and gelling agent were evaluated to develop a topical antimicrobial formulation of propolis. The effects of poloxamer type and concentration on the propolis solubility, release rate, and antimicrobial activities were investigated. Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were the representative bacteria and fungi, respectively. At 5%, poloxamer 407 (P407) and poloxamer 188 (P188) enhanced the propolis solubility by 2.86 and 2.06 folds, respectively; at 10%, they were 2.81 and 2.59 folds, respectively. The micelle size in the P188 formulation increased in the presence of propolis, whereas there was no change in the P407 formulation. Release rates of propolis decreased with the P188 concentration increase, which was attributed to viscosity increase. Both P188 and P407 formulations showed antimicrobial activity against S. aureus in a time-kill kinetics assay. However, only the P188 formulation reduced the cell&rsquo;s numbers significantly against C. albicans, compared to the control. We speculate that P188 mixed micelles were more effective in releasing free active compounds to exhibit anti-microbial activity compared to the P407 micelles encapsulating the hydrophobic compounds in their cores. Propolis in P188 formulation is proposed as a potential topical antimicrobial agent based on its activity against both S. aureus and C. albicans

    Antimicrobial Activities of Propolis in Poloxamer Based Topical Gels

    No full text
    Propolis contains a group of compounds with various activities. However, their low solubility is a drawback for the development of pharmaceutical formulations. In this study, poloxamers as a solubilizer and gelling agent were evaluated to develop a topical antimicrobial formulation of propolis. The effects of poloxamer type and concentration on the propolis solubility, release rate, and antimicrobial activities were investigated. Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were the representative bacteria and fungi, respectively. At 5%, poloxamer 407 (P407) and poloxamer 188 (P188) enhanced the propolis solubility by 2.86 and 2.06 folds, respectively; at 10%, they were 2.81 and 2.59 folds, respectively. The micelle size in the P188 formulation increased in the presence of propolis, whereas there was no change in the P407 formulation. Release rates of propolis decreased with the P188 concentration increase, which was attributed to viscosity increase. Both P188 and P407 formulations showed antimicrobial activity against S. aureus in a time-kill kinetics assay. However, only the P188 formulation reduced the cell’s numbers significantly against C. albicans, compared to the control. We speculate that P188 mixed micelles were more effective in releasing free active compounds to exhibit anti-microbial activity compared to the P407 micelles encapsulating the hydrophobic compounds in their cores. Propolis in P188 formulation is proposed as a potential topical antimicrobial agent based on its activity against both S. aureus and C. albicans

    Injectable Human Hair Keratin–Fibrinogen Hydrogels for Engineering 3D Microenvironments to Accelerate Oral Tissue Regeneration

    No full text
    Traumatic injury of the oral cavity is atypical and often accompanied by uncontrolled bleeding and inflammation. Injectable hydrogels have been considered to be promising candidates for the treatment of oral injuries because of their simple formulation, minimally invasive application technique, and site-specific delivery. Fibrinogen-based hydrogels have been widely explored as effective materials for wound healing in tissue engineering due to their uniqueness. Recently, an injectable foam has taken the spotlight. However, the fibrin component of this biomaterial is relatively stiff. To address these challenges, we created keratin-conjugated fibrinogen (KRT-FIB). This study aimed to develop a novel keratin biomaterial and assess cell–biomaterial interactions. Consequently, a novel injectable KRT-FIB hydrogel was optimized through rheological measurements, and its injection performance, swelling behavior, and surface morphology were investigated. We observed an excellent cell viability, proliferation, and migration/cell–cell interaction, indicating that the novel KRT-FIB-injectable hydrogel is a promising platform for oral tissue regeneration with a high clinical applicability

    Ganoderma lucidum Extract Reduces Insulin Resistance by Enhancing AMPK Activation in High-Fat Diet-Induced Obese Mice

    No full text
    Ganoderma lucidum is used widely in oriental medicine to treat obesity and metabolic diseases. Bioactive substances extracted from G. lucidum have been shown to ameliorate dyslipidemia, insulin resistance, and type 2 diabetes in mice via multiple 5′ AMP-activated protein kinase (AMPK)-mediated mechanisms; however, further studies are required to elucidate the anti-obesity effects of G. lucidum in vivo. In this study, we demonstrated that 3% G. lucidum extract powder (GEP) can be used to prevent obesity and insulin resistance in a mouse model. C57BL/6 mice were provided with a normal diet (ND) or a high-fat diet (HFD) supplemented with 1, 3, or 5% GEP for 12 weeks and the effect of GEP on body weight, liver, adipose tissue, adipokines, insulin and glucose tolerance (ITT and GTT), glucose uptake, glucose-metabolism related proteins, and lipogenesis related genes was examined. GEP administration was found to reduce weight gain in the liver and fat tissues of the mice. In addition, serum parameters were significantly lower in the 3% and 5% GEP mice groups than in those fed a HFD alone, whereas adiponectin levels were significantly higher. We also observed that GEP improved glucose metabolism, reduced lipid accumulation in the liver, and reduced adipocyte size. These effects may have been mediated by enhanced AMPK activation, which attenuated the transcription and translation of lipogenic genes such as fatty acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD1), and sterol regulatory element-binding protein-1c (SREBP1c). Moreover, AMP-activated protein kinase (AMPK) activation increased acetyl-CoA carboxylase (ACC), insulin receptor (IR), IR substrate 1 (IRS1), and Akt protein expression and activation, as well as glucose transporter type 1/4 (GLUT1/4) protein production, thereby improving insulin sensitivity and glucose metabolism. Together, these findings demonstrate that G. lucidum may effectively prevent obesity and suppress obesity-induced insulin resistance via AMPK activation

    Anti-Prion Screening for Acridine, Dextran, and Tannic Acid using Real Time-Quaking Induced Conversion: A Comparison with PrPSc-Infected Cell Screening.

    No full text
    Prion propagation is mediated by the structural alteration of normal prion protein (PrPC) to generate pathogenic prion protein (PrPSc). To date, compounds for the inhibition of prion propagation have mainly been screened using PrPSc-infected cells. Real time-quaking-induced conversion (RT-QuIC) is one alternative screening method. In this study, we assessed the propagation inhibition effects of known anti-prion compounds using RT-QuIC and compared the results with those from a PrPSc-infected cell assay. Compounds were applied to RT-QuIC reactions at 0 h or 22 h after prion propagation to determine whether they inhibited propagation or reduced amplified aggregates. RT-QuIC reactions in presence of acridine, dextran sulfate sodium (DSS), and tannic acid inhibited seeded aggregation with sporadic Creutzfeldt-Jakob disease at 0 h. After treatment at 22 h, amplified fluorescence was decreased in wells treated with either acridine or tannic acid. Compound activities were verified by western blot of RT-QuIC products and in a dye-independent conversion assay, the Multimer Detection System. Protease K-resistant PrPSc fragments (PrPres) were reduced by DSS and tannic acid in the PrPSc-infected cell assay. Importantly, these inhibitory effects were similar despite different treatment times (0 h versus 3 days). Consequentially, RT-QuIC enabled the more specific classification of compounds according to action (i.e., inhibition of prion propagation versus reduction of amplified aggregates). RT-QuIC addresses the limitations of cell-based screening methods and can be used to further aid our understanding of the mechanisms of action of anti-prion compounds

    Antiadhesive Hyaluronic Acid-Based Wound Dressings Promote Wound Healing by Preventing Re-Injury: An In Vivo Investigation

    No full text
    Wound dressings are widely used to protect wounds and promote healing. The water absorption and antifriction properties of dressings are important for regulating the moisture balance and reducing secondary damages during dressing changes. Herein, we developed a hyaluronic acid (HA)-based foam dressing prepared via the lyophilization of photocrosslinked HA hydrogels with high water absorption and antiadhesion properties. To fabricate the HA-based foam dressing (HA foam), the hydroxyl groups of the HA were modified with methacrylate groups, enabling rapid photocuring. The resulting photocured HA solution was freeze-dried to form a porous structure, enhancing its exudate absorption capacity. Compared with conventional biopolymer-based foam dressings, this HA foam exhibited superior water absorption and antifriction properties. To assess the wound-healing potential of HA foam, animal experiments involving SD rats were conducted. Full-thickness defects measuring 2 × 2 cm2 were created on the skin of 36 rats, divided into four groups with 9 individuals each. The groups were treated with gauze, HA foam, CollaDerm®, and CollaHeal® Plus, respectively. The rats were closely monitored for a period of 24 days. In vivo testing demonstrated that the HA foam facilitated wound healing without causing inflammatory reactions and minimized secondary damages during dressing changes. This research presents a promising biocompatible foam wound dressing based on modified HA, which offers enhanced wound-healing capabilities and improved patient comfort and addresses the challenges associated with conventional dressings
    corecore