2,479 research outputs found

    Charge-Focusing Readout of Time Projection Chambers

    Full text link
    Time projection chambers (TPCs) have found a wide range of applications in particle physics, nuclear physics, and homeland security. For TPCs with high-resolution readout, the readout electronics often dominate the price of the final detector. We have developed a novel method which could be used to build large-scale detectors while limiting the necessary readout area. By focusing the drift charge with static electric fields, we would allow a small area of electronics to be sensitive to particle detection for a much larger detector volume. The resulting cost reduction could be important in areas of research which demand large-scale detectors, including dark matter searches and detection of special nuclear material. We present simulations made using the software package Garfield of a focusing structure to be used with a prototype TPC with pixel readout. This design should enable significant focusing while retaining directional sensitivity to incoming particles. We also present first experimental results and compare them with simulation.Comment: 5 pages, 17 figures, Presented at IEEE Nuclear Science Symposium 201

    Inflation by non-minimal coupling

    Full text link
    Inflationary scenarios based on simple non-minimal coupling and its generalizations are studied. Generalizing the form of non-minimal coupling to "K(phi)R" with an arbitrary function K(phi), we show that the flat potential still is obtainable when V(phi)/K^2(phi) is asymptotically constant. Very interestingly, if the ratio of the dimensionless self-coupling constant of the inflaton field and the non-minimal coupling constant is small the cosmological observables for general monomial cases are in good agreement with recent observational data.Comment: 9 pages, 1 figur

    On bulk singularities in the random normal matrix model

    Get PDF
    We extend the method of rescaled Ward identities of Ameur-Kang-Makarov to study the distribution of eigenvalues close to a bulk singularity, i.e. a point in the interior of the droplet where the density of the classical equilibrium measure vanishes. We prove results to the effect that a certain "dominant part" of the Taylor expansion determines the microscopic properties near a bulk singularity. A description of the distribution is given in terms of a special entire function, which depends on the nature of the singularity (a Mittag-Leffler function in the case of a rotationally symmetric singularity).Comment: This version clarifies on the proof of Theorem

    Calabi-Yau Orbifolds and Torus Coverings

    Full text link
    The theory of coverings of the two-dimensional torus is a standard part of algebraic topology and has applications in several topics in string theory, for example, in topological strings. This paper initiates applications of this theory to the counting of orbifolds of toric Calabi-Yau singularities, with particular attention to Abelian orbifolds of C^D. By doing so, the work introduces a novel analytical method for counting Abelian orbifolds, verifying previous algorithm results. One identifies a p-fold cover of the torus T^{D-1} with an Abelian orbifold of the form C^D/Z_p, for any dimension D and a prime number p. The counting problem leads to polynomial equations modulo p for a given Abelian subgroup of S_D, the group of discrete symmetries of the toric diagram for C^D. The roots of the polynomial equations correspond to orbifolds of the form C^D/Z_p, which are invariant under the corresponding subgroup of S_Ds. In turn, invariance under this subgroup implies a discrete symmetry for the corresponding quiver gauge theory, as is clearly seen by its brane tiling formulation.Comment: 33 pages, 5 figures, 7 tables; version published on JHE

    Explicit CP violation in the Dine-Seiberg-Thomas model

    Full text link
    The possibility of explicit CP violation is studied in a supersymmetric model proposed by Dine, Seiberg, and Thomas, with two effective dimension-five operators. The explicit CP violation may be triggered by complex phases in the coefficients for the dimension-five operators in the Higgs potential, and by a complex phase in the scalar top quark masses. Although the scenario of explicit CP violation is found to be inconsistent with the experimental data at LEP2 at the tree level, it may be possible at the one-loop level. For a reasonable parameter space, the masses of the neutral Higgs bosons and their couplings to a pair of ZZ bosons are consistent with the LEP2 data, at the one-loop level.Comment: 5 pages, 2 figure

    The Globular Cluster System of M60 (NGC 4649). II. Kinematics of the Globular Cluster System

    Full text link
    We present a kinematic analysis of the globular cluster (GC) system in the giant elliptical galaxy (gE) M60 in the Virgo cluster. Using the photometric and spectroscopic database of 121 GCs (83 blue GCs and 38 red GCs), we have investigated the kinematics of the GC system. We have found that the M60 GC system shows a significant overall rotation. The rotation amplitude of the blue GCs is slightly smaller than or similar to that of the red GCs, and their angles of rotation axes are similar. The velocity dispersions about the mean velocity and about the best fit rotation curve for the red GCs are marginally larger than those for the blue GCs. Comparison of observed stellar and GC velocity dispersion profiles with those calculated from the stellar mass profile shows that the mass-to-light ratio should be increased as the galactocentric distance increases, indicating the existence of an extended dark matter halo. The entire sample of GCs in M60 is found to have a tangentially biased velocity ellipsoid unlike the GC systems in other gEs. Two subsamples appear to have different velocity ellipsoids. The blue GC system has a modest tangentially biased velocity ellipsoid, while the red GC system has a modest radially biased or an isotropic velocity ellipsoid. From the comparison of the kinematic properties of the M60 GC system to those of other gEs (M87, M49, NGC 1399, NGC 5128, and NGC 4636), it is found that the velocity dispersion of the blue GC system is similar to or larger than that of the red GC system except for M60, and the rotation of the GC system is not negligible. The entire sample of each GC system shows an isotropic velocity ellipsoid except for M60, while the subsamples show diverse velocity ellipsoids. We discuss the implication of these results for the formation models of the GC system in gEs.Comment: 48 pages, 16 figures. To appear in Ap

    Exploiting Inter- and Intra-Memory Asymmetries for Data Mapping in Hybrid Tiered-Memories

    Full text link
    Modern computing systems are embracing hybrid memory comprising of DRAM and non-volatile memory (NVM) to combine the best properties of both memory technologies, achieving low latency, high reliability, and high density. A prominent characteristic of DRAM-NVM hybrid memory is that it has NVM access latency much higher than DRAM access latency. We call this inter-memory asymmetry. We observe that parasitic components on a long bitline are a major source of high latency in both DRAM and NVM, and a significant factor contributing to high-voltage operations in NVM, which impact their reliability. We propose an architectural change, where each long bitline in DRAM and NVM is split into two segments by an isolation transistor. One segment can be accessed with lower latency and operating voltage than the other. By introducing tiers, we enable non-uniform accesses within each memory type (which we call intra-memory asymmetry), leading to performance and reliability trade-offs in DRAM-NVM hybrid memory. We extend existing NVM-DRAM OS in three ways. First, we exploit both inter- and intra-memory asymmetries to allocate and migrate memory pages between the tiers in DRAM and NVM. Second, we improve the OS's page allocation decisions by predicting the access intensity of a newly-referenced memory page in a program and placing it to a matching tier during its initial allocation. This minimizes page migrations during program execution, lowering the performance overhead. Third, we propose a solution to migrate pages between the tiers of the same memory without transferring data over the memory channel, minimizing channel occupancy and improving performance. Our overall approach, which we call MNEME, to enable and exploit asymmetries in DRAM-NVM hybrid tiered memory improves both performance and reliability for both single-core and multi-programmed workloads.Comment: 15 pages, 29 figures, accepted at ACM SIGPLAN International Symposium on Memory Managemen
    • 

    corecore