3,473 research outputs found

    Collider Phenomenology with Split-UED

    Get PDF
    We investigate the collider implications of Split Universal Extra Dimensions. The non-vanishing fermion mass in the bulk, which is consistent with the KK-parity, largely modifies the phenomenology of Minimal Universal Exta Dimensions. We scrutinize the behavior of couplings and study the discovery reach of the Tevatron and the LHC for level-2 Kaluza-Klein modes in the dilepton channel, which would indicates the presence of the extra dimensions. Observation of large event rates for dilepton resonances can result from a nontrivial fermion mass profile along the extra dimensions, which, in turn, may corroborate extra dimensional explanation for the observation of the positron excess in cosmic rays.Comment: 23 pages, 15 figure

    Spectroscopic determination of hole density in the ferromagnetic semiconductor Ga1−x_{1-x}Mnx_{x}As

    Full text link
    The measurement of the hole density in the ferromagnetic semiconductor Ga1−x_{1-x}Mnx_{x}As is notoriously difficult using standard transport techniques due to the dominance of the anomalous Hall effect. Here, we report the first spectroscopic measurement of the hole density in four Ga1−x_{1-x}Mnx_{x}As samples (x=0,0.038,0.061,0.083x=0, 0.038, 0.061, 0.083) at room temperature using Raman scattering intensity analysis of the coupled plasmon-LO-phonon mode and the unscreened LO phonon. The unscreened LO phonon frequency linearly decreases as the Mn concentration increases up to 8.3%. The hole density determined from the Raman scattering shows a monotonic increase with increasing xx for x≤0.083x\leq0.083, exhibiting a direct correlation to the observed TcT_c. The optical technique reported here provides an unambiguous means of determining the hole density in this important new class of ``spintronic'' semiconductor materials.Comment: two-column format 5 pages, 4 figures, to appear in Physical Review
    • …
    corecore