56 research outputs found

    Corrigendum: Behavioral and Neuroimaging Evidence for Facial Emotion Recognition in Elderly Korean Adults with Mild Cognitive Impairment, Alzheimer's Disease, and Frontotemporal Dementia

    Get PDF
    Background: Facial emotion recognition (FER) is impaired in individuals with frontotemporal dementia (FTD) and Alzheimer’s disease (AD) when compared to healthy older adults. Since deficits in emotion recognition are closely related to caregiver burden or social interactions, researchers have fundamental interest in FER performance in patients with dementia.Purpose: The purpose of this study was to identify the performance profiles of six facial emotions (i.e., fear, anger, disgust, sadness, surprise, and happiness) and neutral faces measured among Korean healthy control (HCs), and those with mild cognitive impairment (MCI), AD, and FTD. Additionally, the neuroanatomical correlates of facial emotions were investigated.Methods: A total of 110 (33 HC, 32 MCI, 32 AD, 13 FTD) older adult participants were recruited from two different medical centers in metropolitan areas of South Korea. These individuals underwent an FER test that was used to assess the recognition of emotions or absence of emotion (neutral) in 35 facial stimuli. Repeated measures two-way analyses of variance were used to examine the distinct profiles of emotional recognition among the four groups. We also performed brain imaging and voxel-based morphometry (VBM) on the participants to examine the associations between FER scores and gray matter volume.Results: The mean score of negative emotion recognition (i.e., fear, anger, disgust, and sadness) clearly discriminated FTD participants from individuals with MCI and AD and HC [F(3,106) = 10.829, p 2 = 0.235], whereas the mean score of positive emotion recognition (i.e., surprise and happiness) did not. A VBM analysis showed negative emotions were correlated with gray matter volume of anterior temporal regions, whereas positive emotions were related to gray matter volume of fronto-parietal regions.Conclusion: Impairment of negative FER in patients with FTD is cross-cultural. The discrete neural correlates of FER indicate that emotional recognition processing is a multi-modal system in the brain. Focusing on the negative emotion recognition is a more effective way to discriminate healthy aging, MCI, and AD from FTD in older Korean adults.</p

    Sleep experiences during different lifetime periods and in vivo Alzheimer pathologies

    Get PDF
    Background Very little is known for the direction or causality of the relationship between lifetime sleep experiences and in vivo Alzheimers disease (AD) pathologies. This study aimed to examine the relationship between sleep experiences during the young adulthood, midlife, and late-life periods and in vivo cerebral beta-amyloid (Aβ) deposition and AD signature regional neurodegeneration in cognitively normal (CN) old adults. Methods This study included 202 CN old adults who participated in the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimers Disease (KBASE) study. All participants underwent a comprehensive clinical assessment, [11C] Pittsburgh Compound B positron emission tomography (PET), [18F] Fluorodeoxyglucose-PET, and magnetic resonance imaging. The quality and duration of sleep were assessed for the following age periods: 20–30s, 40–50s, and the most recent month. All analyses were adjusted for age, gender, education, apolipoprotein E ε4 status, vascular risk score, Hamilton Depression Rating Scale score, and use of sleep medication. Results Bad sleep quality and short sleep duration during midlife were significantly associated with increased Aβ deposition and AD signature regional hypometabolism, respectively. Although current bad sleep quality appeared to be associated with increased Aβ accumulation, this association disappeared after controlling for the effects of midlife sleep quality. Neither the quality nor duration of sleep during young adulthood was related to Aβ burden or neurodegeneration. Conclusions Bad sleep quality during midlife increases pathological Aβ deposition in the brain, while short sleep duration during the same period accelerates regional hypometabolism.This study was supported by a grant from the Ministry of Science, ICT, and Future Planning, Republic of Korea (Grant No: NRF-2014M3C7A1046042) and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant No: HI18C0630). The funding source had no role in the design of the study; collection, analysis, and interpretation of the data; and writing of the manuscript

    An In Vivo CRISPR Screening Platform for Prioritizing Therapeutic Targets in AML

    Full text link
    CRISPR-Cas9-based genetic screens have successfully identified cell type-dependent liabilities in cancer, including acute myeloid leukemia (AML), a devastating hematologic malignancy with poor overall survival. Because most of these screens have been performed in vitro using established cell lines, evaluating the physiologic relevance of these targets is critical. We have established a CRISPR screening approach using orthotopic xenograft models to validate and prioritize AML-enriched dependencies in vivo, including in CRISPR-competent AML patient-derived xenograft (PDX) models tractable for genome editing. Our integrated pipeline has revealed several targets with translational value, including SLC5A3 as a metabolic vulnerability for AML addicted to exogenous myo-inositol and MARCH5 as a critical guardian to prevent apoptosis in AML. MARCH5 repression enhanced the efficacy of BCL2 inhibitors such as venetoclax, further highlighting the clinical potential of targeting MARCH5 in AML. Our study provides a valuable strategy for discovery and prioritization of new candidate AML therapeutic targets. SIGNIFICANCE: There is an unmet need to improve the clinical outcome of AML. We developed an integrated in vivo screening approach to prioritize and validate AML dependencies with high translational potential. We identified SLC5A3 as a metabolic vulnerability and MARCH5 as a critical apoptosis regulator in AML, both of which represent novel therapeutic opportunities.This article is highlighted in the In This Issue feature, p. 275

    Clinically Conserved Genomic Subtypes of Gastric Adenocarcinoma

    Get PDF
    Gastric adenocarcinoma (GAC) is a lethal disease characterized by genomic and clinical heterogeneity. By integrating 8 previously established genomic signatures for GAC subtypes, we identified 6 clinically and molecularly distinct genomic consensus subtypes (CGSs). CGS1 have the poorest prognosis, very high stem cell characteristics, and high IGF1 expression, but low genomic alterations. CGS2 is enriched with canonical epithelial gene expression. CGS3 and CGS4 have high copy number alterations and low immune reactivity. However, CGS3 and CGS4 differ in that CGS3 has high HER2 activation, while CGS4 has high SALL4 and KRAS activation. CGS5 has the high mutation burden and moderately high immune reactivity that are characteristic of microsatellite instable tumors. Most CGS6 tumors are positive for Epstein Barr virus and show extremely high levels of methylation and high immune reactivity. In a systematic analysis of genomic and proteomic data, we estimated the potential response rate of each consensus subtype to standard and experimental treatments such as radiation therapy, targeted therapy, and immunotherapy. Interestingly, CGS3 was significantly associated with a benefit from chemoradiation therapy owing to its high basal level of ferroptosis. In addition, we also identified potential therapeutic targets for each consensus subtype. Thus, the consensus subtypes produced a robust classification and provide for additional characterizations for subtype-based customized interventions

    Behavioral and Neuroimaging Evidence for Facial Emotion Recognition in Elderly Korean Adults with Mild Cognitive Impairment, Alzheimer’s Disease, and Frontotemporal Dementia

    No full text
    Background: Facial emotion recognition (FER) is impaired in individuals with frontotemporal dementia (FTD) and Alzheimer’s disease (AD) when compared to healthy older adults. Since deficits in emotion recognition are closely related to caregiver burden or social interactions, researchers have fundamental interest in FER performance in patients with dementia.Purpose: The purpose of this study was to identify the performance profiles of six facial emotions (i.e., fear, anger, disgust, sadness, surprise, and happiness) and neutral faces measured among Korean healthy control (HCs), and those with mild cognitive impairment (MCI), AD, and FTD. Additionally, the neuroanatomical correlates of facial emotions were investigated.Methods: A total of 110 (33 HC, 32 MCI, 32 AD, 13 FTD) older adult participants were recruited from two different medical centers in metropolitan areas of South Korea. These individuals underwent an FER test that was used to assess the recognition of emotions or absence of emotion (neutral) in 35 facial stimuli. Repeated measures two-way analyses of variance were used to examine the distinct profiles of emotional recognition among the four groups. We also performed brain imaging and voxel-based morphometry (VBM) on the participants to examine the associations between FER scores and gray matter volume.Results: The mean score of negative emotion recognition (i.e., fear, anger, disgust, and sadness) clearly discriminated FTD participants from individuals with MCI and AD and HC [F(3,106) = 10.829, p &lt; 0.001, η2 = 0.235], whereas the mean score of positive emotion recognition (i.e., surprise and happiness) did not. A VBM analysis showed negative emotions were correlated with gray matter volume of anterior temporal regions, whereas positive emotions were related to gray matter volume of fronto-parietal regions.Conclusion: Impairment of negative FER in patients with FTD is cross-cultural. The discrete neural correlates of FER indicate that emotional recognition processing is a multi-modal system in the brain. Focusing on the negative emotion recognition is a more effective way to discriminate healthy aging, MCI, and AD from FTD in older Korean adults

    Moderating Effect of Insulin Resistance on the Relationship between Gray Matter Volumes and Cognitive Function

    No full text
    Background: It is controversial whether exposure to insulin resistance accelerates cognitive deterioration. The present study aimed to investigate the association between insulin resistance and gray matter volume loss to predict the cognitive decline. Methods: We recruited 160 participants (78 with Alzheimer&#8217;s disease and 82 without Alzheimer&#8217;s disease). Insulin resistance, regional gray matter volume, and cognitive function were assessed. A hierarchical moderated multiple regression (MMR) model was used to determine any associations among insulin resistance, structural changes in the brain, and cognitive decline. Results: The volumes of 7 regions in the gray matter were negatively related to insulin resistance in Alzheimer&#8217;s disease (p =0.032). Hierarchical MMR analysis indicated that insulin resistance did not directly affect the cognitive decline but moderated the cognitive decline through the decrease in gray matter volume in the key brain regions, i.e., inferior orbitofrontal gyrus (left), middle cingulate gyrus (right), hippocampus (right), and precuneus (right) (p &lt; 0.05 in each case). Conclusion: Insulin resistance appears to exacerbate the cognitive decline associated with several gray matter volume loss

    Association of moderate alcohol intake with in vivo amyloid-beta deposition in human brain: A cross-sectional study.

    No full text
    BACKGROUND:An emerging body of literature has indicated that moderate alcohol intake may be protective against Alzheimer disease (AD) dementia. However, little information is available regarding whether moderate alcohol intake is related to reductions in amyloid-beta (Aβ) deposition, or is protective via amyloid-independent mechanisms in the living human brain. Here we examined the associations of moderate alcohol intake with in vivo AD pathologies, including cerebral Aβ deposition, neurodegeneration of AD-signature regions, and cerebral white matter hyperintensities (WMHs) in the living human brain. METHODS AND FINDINGS:The present study was part of the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease (KBASE), an ongoing prospective cohort study that started in 2014. As of November 2016, 414 community-dwelling individuals with neither dementia nor alcohol-related disorders (280 cognitively normal [CN] individuals and 134 individuals with mild cognitive impairment [MCI]) between 56 and 90 years of age (mean age 70.9 years ± standard deviation 7.8; male, n [%] = 180 [43.5]) were recruited from 4 sites (i.e., 2 university hospitals and 2 public centers for dementia prevention and management) around Seoul, South Korea. All the participants underwent comprehensive clinical assessments comprising lifetime and current histories of alcohol intake and multimodal brain imaging, including [11C] Pittsburgh compound B positron emission tomography (PET), [18F] fluorodeoxyglucose (FDG) PET, and magnetic resonance imaging (MRI) scans. Lifetime and current alcohol intake were categorized as follows: no drinking, <1 standard drink (SD)/week, 1-13 SDs/week, and 14+ SDs/week. A moderate lifetime alcohol intake (1-13 SDs/week) was significantly associated with a lower Aβ positivity rate compared to the no drinking group, even after controlling for potential confounders (odds ratio 0.341, 95% confidence interval 0.163-0.714, p = 0.004). In contrast, current alcohol intake was not associated with amyloid deposition. Additionally, alcohol intake was not related to neurodegeneration of AD-signature regions or cerebral WMH volume. The present study had some limitations in that it had a cross-sectional design and depended on retrospective recall for alcohol drinking history. CONCLUSIONS:In this study, we observed in middle- and old-aged individuals with neither dementia nor alcohol-related disorders that moderate lifetime alcohol intake was associated with lower cerebral Aβ deposition compared to a lifetime history of not drinking. Moderate lifetime alcohol intake may have a beneficial influence on AD by reducing pathological amyloid deposition rather than amyloid-independent neurodegeneration or cerebrovascular injury
    corecore