90 research outputs found

    Single-center experience of the Korean-Developmental Screening Test for infants and children

    Get PDF
    PurposeWe investigated the number of test takers of the Korean-Developmental Screening Test (K-DST) in a single children's hospital within a year, according to age, referral rate, and follow-up percentage.MethodsFor this study, 4,062 children who visited and received K-DST at Woorisoa Children's Hospital between January and December 2015 were enrolled. Seven test sets were used according to the Korean National Health Screening Program for infants and children in the following age groups: 4 to 6, 9 to 12, 18 to 24, 30 to 36, 42 to 48, 54 to 60, and 66 to 71 months. The results of the K-DST were categorized into 4 groups as follows: further evaluation (1SD).ResultsThe test participants' population and follow-up population were concentrated before the age of 24 months (2,532, 62.3%). The children most commonly referred for further evaluation were those in the 30- to 41-month age group. A mismatch was found between the results of the K-DST and the additional questions. Most of the infants and children with suspicious developmental delays showed catch-up development in their follow-up tests (43 of 55, 78.2%).ConclusionThe use of K-DST should be encouraged, especially among children aged over 24 months. Multiple-choice question format for the additional questions is recommended to avoid confusion. We suggest a nationwide study to evaluate and revise the K-DST

    Prophylactic and Therapeutic Efficacy of Avian Antibodies against Influenza Virus H5N1 and H1N1 in Mice

    Get PDF
    Background: Pandemic influenza poses a serious threat to global health and the world economy. While vaccines are currently under development, passive immunization could offer an alternative strategy to prevent and treat influenza virus infection. Attempts to develop monoclonal antibodies (mAbs) have been made. However, passive immunization based on mAbs may require a cocktail of mAbs with broader specificity in order to provide full protection since mAbs are generally specific for single epitopes. Chicken immunoglobulins (IgY) found in egg yolk have been used mainly for treatment of infectious diseases of the gastrointestinal tract. Because the recent epidemic of highly pathogenic avian influenza virus (HPAIV) strain H5N1 has resulted in serious economic losses to the poultry industry, many countries including Vietnam have introduced mass vaccination of poultry with H5N1 virus vaccines. We reasoned that IgY from consumable eggs available in supermarkets in Vietnam could provide protection against infections with HPAIV H5N1. Methods and Findings: We found that H5N1-specific IgY that are prepared from eggs available in supermarkets in Vietnam by a rapid and simple water dilution method cross-protect against infections with HPAIV H5N1 and related H5N2 strains in mice. When administered intranasally before or after lethal infection, the IgY prevent the infection or significantly reduce viral replication resulting in complete recovery from the disease, respectively. We further generated H1N1 virus-specific IgY by immunization of hens with inactivated H1N1 A/PR/8/34 as a model virus for the current pandemic H1N1/09 and found that such H1N1-specific IgY protect mice from lethal influenza virus infection. Conclusions: The findings suggest that readily available H5N1-specific IgY offer an enormous source of valuable biological material to combat a potential H5N1 pandemic. In addition, our study provides a proof-of-concept for the approach using virus-specific IgY as affordable, safe, and effective alternative for the control of influenza outbreaks, including the current H1N1 pandemic

    Cost-effectiveness analysis of the implementation of a National Immunization Program for rotavirus vaccination in a country with a low rotavirus gastroenteritis-related mortality: A South Korean study.

    Get PDF
    Rotavirus is a leading cause of severe gastroenteritis among children younger than 5?years in South Korea. Two rotavirus vaccines (RVs), pentavalent human-bovine reassortant vaccine (Rotateq®; RV5) and attenuated human strain originated monovalent vaccine (Rotarix®; RV1), have been available for voluntary vaccination using out-of-pocket payment since 2007 and 2008, respectively. Yet, RVs are not included in the National Immunization Program (NIP), partly because of the low associated mortality rate. We assessed the cost-effectiveness of RVs to assist the evidence-based decision-making process for NIP implementation in South Korea. Using a transparent age-structured static cohort model, we simulated the experience of ten annual birth cohorts of South Korean children from 2018 to 2027. Model inputs included rotavirus gastroenteritis (RVGE) incidence and mortality rates, RVGE treatment costs, vaccine coverage and timeliness, and vaccine effectiveness and price. The incremental costs of including RVs in the NIP compared to no vaccination were 59,662,738 USD and 152,444,379 USD for RV1 and RV5, respectively. The introduction of RV1 and RV5 can prevent 4799 disability-adjusted life years (DALYs) and 5068 DALYs. From the societal perspective, the incremental cost-effectiveness ratios (ICERs) for adopting RV into the NIP versus no vaccination were 12,432 USD per DALY averted for RV1 and 30,081 USD per DALY averted for RV 5. The weighted average for the ICERs of the two vaccines computed using the market share of each vaccine in the current voluntary use as a weight, was 21,698 USD per DALY averted. The estimated ICER was below 1?×?gross domestic product per capita (30,000 USD), which has been a commonly used willingness-to-pay threshold for health care technology assessment in South Korea, suggesting that introducing RVs into the NIP would be cost-effective

    Sublingual Immunization with M2-Based Vaccine Induces Broad Protective Immunity against Influenza

    Get PDF
    The ectodomain of matrix protein 2 (M2e) of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs) have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.n.) route than after parenteral injection. However, i.n. administration of vaccines poses rare but serious safety issues associated with retrograde passage of inhaled antigens and adjuvants through the olfactory epithelium. In this study, we examined whether the sublingual (s.l.) route could serve as a safe and effective alternative mucosal delivery route for administering a prototype M2e-based vaccine. The mechanism whereby s.l. immunization with M2e vaccine candidate induces broad protection against infection with different influenza virus subtypes was explored.A recombinant M2 protein with three tandem copies of the M2e (3M2eC) was expressed in Escherichia coli. Parenteral immunizations of mice with 3M2eC induced high levels of M2e-specific serum Abs but failed to provide complete protection against lethal challenge with influenza virus. In contrast, s.l. immunization with 3M2eC was superior for inducing protection in mice. In the latter animals, protection was associated with specific Ab responses in the lungs.The results demonstrate that s.l. immunization with 3M2eC vaccine induced airway mucosal immune responses along with broad cross-protective immunity to influenza. These findings may contribute to the understanding of the M2-based vaccine approach to control epidemic and pandemic influenza infections

    Type I Interferon Signaling Regulates Ly6Chi Monocytes and Neutrophils during Acute Viral Pneumonia in Mice

    Get PDF
    Type I interferon (IFN-I) plays a critical role in the homeostasis of hematopoietic stem cells and influences neutrophil influx to the site of inflammation. IFN-I receptor knockout (Ifnar1−/−) mice develop significant defects in the infiltration of Ly6Chi monocytes in the lung after influenza infection (A/PR/8/34, H1N1). Ly6Chi monocytes of wild-type (WT) mice are the main producers of MCP-1 while the alternatively generated Ly6Cint monocytes of Ifnar1−/− mice mainly produce KC for neutrophil influx. As a consequence, Ifnar1−/− mice recruit more neutrophils after influenza infection than do WT mice. Treatment of IFNAR1 blocking antibody on the WT bone marrow (BM) cells in vitro failed to differentiate into Ly6Chi monocytes. By using BM chimeric mice (WT BM into Ifnar1−/− and vice versa), we confirmed that IFN-I signaling in hematopoietic cells is required for the generation of Ly6Chi monocytes. Of note, WT BM reconstituted Ifnar1−/− chimeric mice with increased numbers of Ly6Chi monocytes survived longer than influenza-infected Ifnar1−/− mice. In contrast, WT mice that received Ifnar1−/− BM cells with alternative Ly6Cint monocytes and increased numbers of neutrophils exhibited higher mortality rates than WT mice given WT BM cells. Collectively, these data suggest that IFN-I contributes to resistance of influenza infection by control of monocytes and neutrophils in the lung

    Options and Obstacles for Designing a Universal Influenza Vaccine

    No full text
    Since the discovery of antibodies specific to a highly conserved stalk region of the influenza virus hemagglutinin (HA), eliciting such antibodies has been considered the key to developing a universal influenza vaccine that confers broad-spectrum protection against various influenza subtypes. To achieve this goal, a prime/boost immunization strategy has been heralded to redirect host immune responses from the variable globular head domain to the conserved stalk domain of HA. While this approach has been successful in eliciting cross-reactive antibodies against the HA stalk domain, protective efficacy remains relatively poor due to the low immunogenicity of the domain, and the cross-reactivity was only within the same group, rather than among different groups. Additionally, concerns are raised on the possibility of vaccine-associated enhancement of viral infection and whether multiple boost immunization protocols would be considered practical from a clinical standpoint. Live attenuated vaccine hitherto remains unexplored, but is expected to serve as an alternative approach, considering its superior cross-reactivity. This review summarizes recent advancements in the HA stalk-based universal influenza vaccines, discusses the pros and cons of these approaches with respect to the potentially beneficial and harmful effects of neutralizing and non-neutralizing antibodies, and suggests future guidelines towards the design of a truly protective universal influenza vaccine

    Toward a universal influenza vaccine: a retrospective

    No full text

    Pan-Influenza A Protection by Prime–Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model

    No full text
    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime–boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro, CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo. Heterologous combination of prime (H1)–boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a “truly” universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising results of potency, breadth, and safety demonstrated in the mouse model support further studies in higher animal models for clinical relevance
    corecore