2 research outputs found

    Hydrophobic Gating and Spatial Confinement in Hierarchically Organized Block Copolymer-Nanopore Electrode Arrays for Electrochemical Biosensing of 4-Ethyl Phenol

    No full text
    Hydrophobic gating in biological transport proteins is regulated by stimulus-specific switching between filled and empty nanocavities, endowing them with selective mass transport capabilities. Inspired by these, solid-state nanochannels have been integrated into functional materials for a broad range of applications, such as energy conversion, filtration, and nanoelectronics, and here we extend these to electrochemical biosensors coupled to mass transport control elements. Specifically, we report hierarchically organized structures with block copolymers on tyrosinase-modified two-electrode nanopore electrode arrays (BCP@NEAs) as stimulus-controlled electrochemical biosensors for alkylphenols. A polystyrene-b-poly(4-vinyl)pyridine (PS-b-P4VP) membrane placed atop the NEA endows the system with potential-responsive gating properties, where water transport is spatially and temporarily gated through hydrophobic P4VP nanochannels by the application of appropriate potentials. The reversibility of hydrophobic voltage-gating makes it possible to capture and confine analyte species in the attoliter-volume vestibule of cylindrical nanopore electrodes, enabling redox cycling and yielding enhanced currents with amplification factors >100× when operated in a generator-collector mode. The enzyme-coupled sensing capabilities are demonstrated using nonelectroactive 4-ethyl phenol, exploiting the tyrosinase-catalyzed turnover into reversibly redox-active quinones, then using the quinone-catechol redox reaction to achieve ultrasensitive cycling currents in confined BCP@NEA sensors giving a limit-of-detection of ∼120 nM. The mass transport controlled sensing platform described here is relevant to the development of enzyme-coupled multiplex biosensors for sensitive and selective detection of biomarkers and metabolites in next-generation point-of-care devices.</p

    Miniaturized Reverse Electrodialysis-Powered Biosensor Using Electrochemiluminescence on Bipolar Electrode

    No full text
    We suggest an electrochemiluminescence (ECL)-sensing platform driven by ecofriendly, disposable, and miniaturized reverse electrodialysis (RED) patches as an electric power source. The flexible RED patches composed of ion-exchange membranes (IEMs) can produce voltage required for ECL sensing by simply choosing the appropriate number of IEMs and the ratio of salt concentrations. We integrate the RED patch with a bipolar electrode on the microfluidic chip to demonstrate the proof-of-concept, i.e., glucose detection in the range of 0.5–10 mM by observing ECL emissions with naked eyes. The miniaturized RED-powered biosensing system is widely applicable for electrochemical-sensing platforms. This is expected to be a solution for practical availability of battery-free electrochemical sensors for disease diagnosis in developing countries
    corecore