4 research outputs found

    Comparison between Concentration and Immersion Based on EEG Analysis

    No full text
    Concentration and immersion belong to a similar mental state in which a person is preoccupied with a particular task. In this study, we investigated a possibility of diagnosing two mental states with a subtle difference. Concentration and immersion states were induced to analyze the electroencephalography (EEG) changes during these states. Thirty-two college students in their 20s participated in the study. For concentration, subjects were asked to focus on a red dot at the center of a white screen, and for immersion they were asked to focus on playing a computer game. Relative to rest, Alpha waves decreased during concentration and immersion. Relative to rest, Theta waves decreased at almost all channels during concentration and, on the other hand, increased at all channels during immersion. Beta waves increased during concentration and immersion in the frontal and occipital lobes, with a higher increase in immersion. In the temporal lobe, Beta waves decreased during concentration and increased during immersion. In the central region, Beta waves decreased during concentration and immersion, and the decrease during immersion was larger. Such evident differences between the EEG results for concentration and immersion can imply diagnostic capabilities of various other mental states

    Effect of temporal interference electrical stimulation on phasic dopamine release in the striatum

    No full text
    Background: Temporal interference stimulation (TIS) is a neuromodulation technique that could stimulate deep brain regions by inducing interfering electrical signals based on high-frequency electrical stimulations of multiple electrode pairs from outside the brain. Despite numerous TIS studies, however, there has been limited investigation into the neurochemical effects of TIS. Objective: We performed two experiments to investigate the effect of TIS on the medial forebrain bundle (MFB)-evoked phasic dopamine (DA) response. Methods: In the first experiment, we applied TIS next to a carbon fiber microelectrode (CFM) to examine the modulation of the MFB-evoked phasic DA response in the striatum (STr). Beat frequencies and intensities of TIS were 0, 2, 6, 10, 20, 60, 130 Hz and 0, 100, 200, 300, 400, 500 μA. In the second experiment, we examined the effect of TIS with a 2 Hz beat frequency (based on the first experiment) on MFB-evoked phasic DA release when applied above the cortex (with a simulation-based stimulation site targeting the striatum). We employed 0 Hz and 2 Hz beat frequencies and a control condition without stimulation. Results: In the first experiment, TIS with a beat frequency of 2 Hz and an intensity of 400 μA or greater decreased MFB-evoked phasic DA release by roughly 40%, which continued until the experiment's end. In contrast, TIS at beat frequencies other than 2 Hz and intensities less than 400 μA did not affect MFB-evoked phasic DA release. In the second experiment, TIS with a 2 Hz beat frequency decreased only the MFB-evoked phasic DA response, but the reduction in DA release was not sustained. Conclusions: STr-applied and cortex-applied TIS with delta frequency dampens evoked phasic DA release in the STr. These findings demonstrate that TIS could influence the neurochemical modulation of the brain
    corecore