107 research outputs found

    Identification and characterization of interacting protein of CD157

    Get PDF
    Master'sMASTER OF SCIENC

    Case study of temporal changes in maternal dietary intake and the association with breast milk mineral contents

    Get PDF
    Minerals play important roles in infant growth and development, even though they only make up to 0.2 g% of the mature breast milk contents. Limited studies examined the association between maternal dietary intake and breast milk mineral contents in a temporal manner. Twenty Malaysian Malay postpartum mothers were recruited by either convenience or snow balling sampling from the urban lower middle income residential areas. Dietary intake of the subjects was obtained by 24-hour recall during each breast milk collection. Adequacy of maternal mineral intake was compared with the latest Recommended Nutrient Intake for Malaysia. Each of the subject provided breast milk samples for three times (T1, T2, and T3) at consecutive 2-week intervals. Breast milk concentrations of selected macro- and micro-minerals, including Ca, P, K, Na, Mg, Fe, Zn, Cu, Mn, Se, I, Cr and Mo were determined by inductively coupled plasma mass spectrometry (ICP-MS). Subjects were aged 31.4 +/- 6.1 years with a majority (60 %) having post-secondary school/college education. While maternal intake of macro-minerals, Ca, P, K and Mg, did not display a significant temporal changes from T1 to T3, the intake of micro-minerals, Cu, Mn and I decreased significantly over time from T1 to T3. Breast milk K, Fe, Zn and Cu concentrations showed a significant decreased with the progression of lactation from transitional (2-3 weeks) to established stage (>8-12 weeks). Significant correlations were established between maternal intake of K, Na, Fe and Se and their respective concentrations in breast milk in the present study. This case study revealed an inadequate maternal intake of several key micro-minerals (Cu, Mn, I) among the postpartum Malay mothers and a decreasing concentrations of certain essential minerals (K, Fe, Zn and Cu) in breast milk with lactation stage

    Temporal Changes in Breast Milk Fatty Acids Contents:A Case Study of Malay Breastfeeding Women

    Get PDF
    The composition of human breast milk changes in the first two months of life, adapting itself to the evolving needs of the growing new-born. Lipids in milk are a source of energy, essential fatty acids (FA), fat-soluble vitamins, and vital bioactive components. Information on breast milk FA of Malaysian lactating women is scarce. Based on convenience sampling, a total of 20 Malay breastfeeding women who fulfilled the inclusion criteria were recruited. Breast milk was collected three times from each subject at consecutive intervals of 2-3 weeks apart. A total of 60 breast milk samples were collected and classified into "transitional milk" (n = 8), "early milk" (n = 26) and "mature milk" (n = 26). All milk samples were air freighted to University of Groningen, Netherlands for analysis. The dominant breast milk FA were oleic acid, constituting 33% of total fatty acids, followed by palmitic acid (26%). Both these FA and the essential FA, linoleic acid (10%) and alpha-linolenic acid (0.4%), showed no significant changes from transitional to mature milk. Breast milk ratio of n-6:n-3 polyunsaturated fatty acids (PUFA) was comparatively high, exceeding 10 throughout the lactation period, suggesting a healthier balance of PUFA intake is needed in pregnancy and at postpartum

    Consensus document for invasive coronary physiologic assessment in Asia-Pacific countries

    Get PDF
    Background: Currently, invasive physiologic assessment such as fractional flow reserve is widely used worldwide with different adoption rates around the globe. Patient characteristics and physician preferences often differ in the Asia-Pacific (APAC) region with respect to treatment strategy, techniques, lesion complexity, access to coronary physiology and imaging devices, as well as patient management. Thus, there is a need to construct a consensus document on recommendations for use of physiology-guided percutaneous coronary intervention (PCI) in APAC populations. This document serves as an overview of recommendations describing the best practices for APAC populations to achieve more consistent and optimal clinical outcomes.  Methods and Results: A comprehensive multiple-choice questionnaire was provided to 20 interven- tional cardiologists from 10 countries in the APAC region. Clinical evidence, tips and techniques, and clinical situations for the use of physiology-guided PCI in APAC were reviewed and used to propose key recommendations. There are suggestions to continue to develop evidence for lesion and patient types that will benefit from physiology, develop directions for future research in health economics and local data, develop appropriate use criteria in different countries, and emphasize the importance of education of all stakeholders. A consensus recommendation to enhance the penetration of invasive physiology-based therapy was to adopt the 5E approach: Evidence, Education, Expand hardware, Economics and Expert consensus.  Conclusions: This consensus document and recommendations support interventional fellows and cardiologists, hospital administrators, patients, and medical device companies to build confidence and encourage wider implementation of invasive coronary physiology-guided therapy in the APAC region.

    Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis

    No full text
    Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (tti(s450)), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In tti(s450), the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in tti(s450) larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in tti(s450) larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death.This research was funded by the National Health and Medical Research Council of Australia through Project grant 433614 (JKH), Program grant 487922 (JKH), a Senior Research Fellowship (JKH), and a Howard Florey Centenary Fellowship (HV). Operational Infrastructure Support was provided by the Victorian Government, Australia. Additional support was from Australian Research Council grant DP0346823 (GJL); NIH grant DK060322 (DYRS); and CDMRP, Department of Defense, USA W81XWH-10-1-0854 (KCE)

    Identification of Cancer Cell-Line Origins Using Fluorescence Image-Based Phenomic Screening

    Get PDF
    Universal phenotyping techniques that can discriminate among various states of biological systems have great potential. We applied 557 fluorescent library compounds to NCI's 60 human cancer cell-lines (NCI-60) to generate a systematic fluorescence phenotypic profiling data. By the kinetic fluorescence intensity analysis, we successfully discriminated the organ origin of all the 60 cell-lines

    Deletion of the WD40 Domain of LRRK2 in Zebrafish Causes Parkinsonism-Like Loss of Neurons and Locomotive Defect

    Get PDF
    LRRK2 plays an important role in Parkinson's disease (PD), but its biological functions are largely unknown. Here, we cloned the homolog of human LRRK2, characterized its expression, and investigated its biological functions in zebrafish. The blockage of zebrafish LRRK2 (zLRRK2) protein by morpholinos caused embryonic lethality and severe developmental defects such as growth retardation and loss of neurons. In contrast, the deletion of the WD40 domain of zLRRK2 by morpholinos targeting splicing did not induce severe embryonic developmental defects; rather it caused Parkinsonism-like phenotypes, including loss of dopaminergic neurons in diencephalon and locomotion defects. These neurodegenerative and locomotion defects could be rescued by over-expressing zLRRK2 or hLRRK2 mRNA. The administration of L-dopa could also rescue the locomotion defects, but not the neurodegeneration. Taken together, our results demonstrate that zLRRK2 is an ortholog of hLRRK2 and that the deletion of WD40 domain of zLRRK2 provides a disease model for PD

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants
    corecore