1,144 research outputs found

    Decoding Single Molecule Time Traces with Dynamic Disorder

    Full text link
    Single molecule time trajectories of biomolecules provide glimpses into complex folding landscapes that are difficult to visualize using conventional ensemble measurements. Recent experiments and theoretical analyses have highlighted dynamic disorder in certain classes of biomolecules, whose dynamic pattern of conformational transitions is affected by slower transition dynamics of internal state hidden in a low dimensional projection. A systematic means to analyze such data is, however, currently not well developed. Here we report a new algorithm - Variational Bayes-double chain Markov model (VB-DCMM) - to analyze single molecule time trajectories that display dynamic disorder. The proposed analysis employing VB-DCMM allows us to detect the presence of dynamic disorder, if any, in each trajectory, identify the number of internal states, and estimate transition rates between the internal states as well as the rates of conformational transition within each internal state. Applying VB-DCMM algorithm to single molecule FRET data of H-DNA in 100 mM-Na+^+ solution, followed by data clustering, we show that at least 6 kinetic paths linking 4 distinct internal states are required to correctly interpret the duplex-triplex transitions of H-DNA

    The Role of Evaluability Bias and the Fairness Effect in the Escalation of Commitment to Troubled Software Product Development Projects

    Get PDF
    New software product development entails considerable risks. One significant risk is that decision makers can become overly committed to troubled software product development projects (i.e., escalation of commitment). While prior research has identified factors that promote escalation in information technology projects, there has been little attempt to leverage the context of software product development, which can include evaluating attributes of a software product under development and weighing a personal financial reward tied to a successful product launch. In this study, we conducted two experiments to investigate how evaluability bias concerning software attributes and the fairness effect that arises from the relative amount of a personal financial reward influence the escalation of commitment to troubled software product development projects. Our findings suggest that the escalation of commitment to troubled software product development projects is influenced by both evaluability bias, which affects the perceived attractiveness of a software product under development, and the fairness effect, which influences the perceived attractiveness of a personal financial reward tied to a successful product launch. This study contributes to both the information systems literature and the escalation literature by providing novel theoretical explanations as to why escalation occurs in the context of new software product developmen

    On instantons as Kaluza-Klein modes of M5-branes

    Get PDF
    Instantons and W-bosons in 5d maximally supersymmetric Yang-Mills theory arise from a circle compactification of the 6d (2,0) theory as Kaluza-Klein modes and winding self-dual strings, respectively. We study an index which counts BPS instantons with electric charges in Coulomb and symmetric phases. We first prove the existence of unique threshold bound state of (noncommutative) U(1) instantons for any instanton number, and also show that charged instantons in the Coulomb phase correctly give the degeneracy of SU(2) self-dual strings. By studying SU(N) self-dual strings in the Coulomb phase, we find novel momentum-carrying degrees on the worldsheet. The total number of these degrees equals the anomaly coefficient of SU(N) (2,0) theory. We finally show that our index can be used to study the symmetric phase of this theory, and provide an interpretation as the superconformal index of the sigma model on instanton moduli space.1156sciescopu

    SNP@Ethnos: a database of ethnically variant single-nucleotide polymorphisms

    Get PDF
    Inherited genetic variation plays a critical but largely uncharacterized role in human differentiation. The completion of the International HapMap Project makes it possible to identify loci that may cause human differentiation. We have devised an approach to find such ethnically variant single-nucleotide polymorphisms (ESNPs) from the genotype profile of the populations included in the International HapMap database. We selected ESNPs using the nearest shrunken centroid method (NSCM), and performed multiple tests for genetic heterogeneity and frequency spectrum on genes having ESNPs. The function and disease association of the selected SNPs were also annotated. This resulted in the identification of 100 736 SNPs that appeared uniquely in each ethnic group. Of these SNPs, 1009 were within disease-associated genes, and 85 were predicted as damaging using the Sorting Intolerant From Tolerant system. This study resulted in the creation of the SNP@Ethnos database, which is designed to make this type of detailed genetic variation approach available to a wider range of researchers. SNP@Ethnos is a public database of ESNPs with annotation information that currently contains 100 736 ESNPs from 10 138 genes, and can be accessed at and or directly at

    Inhibition of poly(ADP-ribose)polymerase binding to DNA by thymidine dimer

    Get PDF
    AbstractThe ability of poly(ADP-ribose)polymerase to bind damaged DNA was assessed by electrophoretic mobility shift assay. DNA binding domain of poly(ADP-ribose)polymerase (PARPDBD) binds to synthetic deoxyribonucleotide duplex 10-mer. However, the synthetic deoxyribonucleotide duplex containing cys-syn thymidine dimer which produces the unwinding of DNA helix structure lost its affinity to PARPDBD. It was shown that the binding of PARPDBD to the synthetic deoxyribonucleotide duplex was not affected by O6-Me-dG which causes only minor distortion of DNA helix structure. This study suggests that the stabilized DNA helix structure is important for poly(ADP-ribose)polymerase binding to DNA breaks, which are known to stimulate catalytic activity of poly(ADP-ribose)polymerase
    corecore