4,646 research outputs found

    Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates

    Full text link
    We investigate thermal relaxation of superfluid turbulence in a highly oblate Bose-Einstein condensate. We generate turbulent flow in the condensate by sweeping the center region of the condensate with a repulsive optical potential. The turbulent condensate shows a spatially disordered distribution of quantized vortices and the vortex number of the condensate exhibits nonexponential decay behavior which we attribute to the vortex pair annihilation. The vortex-antivortex collisions in the condensate are identified with crescent-shaped, coalesced vortex cores. We observe that the nonexponential decay of the vortex number is quantitatively well described by a rate equation consisting of one-body and two-body decay terms. In our measurement, we find that the local two-body decay rate is closely proportional to T2/μT^2/\mu, where TT is the temperature and μ\mu is the chemical potential.Comment: 7 pages, 9 figure

    Observation of a Geometric Hall Effect in a Spinor Bose-Einstein Condensate with a Skyrmion Spin Texture

    Full text link
    For a spin-carrying particle moving in a spatially varying magnetic field, effective electromagnetic forces can arise due to the geometric phase associated with adiabatic spin rotation of the particle. We report the observation of a geometric Hall effect in a spinor Bose-Einstein condensate with a skyrmion spin texture. Under translational oscillations of the spin texture, the condensate resonantly develops a circular motion in a harmonic trap, demonstrating the existence of an effective Lorentz force. When the condensate circulates, quantized vortices are nucleated in the boundary region of the condensate and the vortex number increases over 100 without significant heating. We attribute the vortex nucleation to the shearing effect of the effective Lorentz force from the inhomogeneous effective magnetic field.Comment: 9 pages, 11 figure

    Non-thermal origin of nonlinear transport across magnetically induced superconductor-metal-insulator transition

    Full text link
    We have studied the effect of perpendicular magnetic fields and temperatures on the nonlinear electronic transport in amorphous Ta superconducting thin films. The films exhibit a magnetic field induced metallic behavior intervening the superconductor-insulator transition in the zero temperature limit. We show that the nonlinear transport in the superconducting and metallic phase is of non-thermal origin and accompanies an extraordinarily long voltage response time.Comment: 5 pages, 4 figure

    Refining Historical earthquake Data Through Modeling and Scale Model Tests

    Get PDF
    This study was performed for the reevaluation of historical earthquake records which occurred in Korea through tests and numerical analyses. For the scale model tests, static and cyclic lateral load tests on wooden frames that constitute a Korean ancient commoner’s house were conducted. Full-scale models of two types of frames were used for testing. Two 1:4 scale models were tested for rock and soil foundation conditions. Scaled real earthquake time histories were inputted for the tests. The peak ground acceleration (PGA) at the collapse of the house at the soil site was 0.25g, whereas PGA for moderate damage at the rock site was 0.6g. The intensity of major historical earthquake records related with house collapses was reevaluated based on the results of these scale mode1 tests. The magnitudes of historical earthquake records related with house collapses were estimated considering the magnitude, epicentral distance, soil condition and aging of the house. Eighteen artificial time histories for magnitudes 6-8, epicentral distances 5 km - 350 km and hard and soft soil condition were generated. The aging effects of the house was modeled as the lateral loading capacity of wooden frames represented by hysteretic stiffness decreased linearly with time

    Matrix Metalloproteinase-3 Causes Dopaminergic Neuronal Death through Nox1-Regenerated Oxidative Stress

    Get PDF
    In the present study we investigated the interplay between matrix metalloproteinase 3 (MMP3) and NADPH oxidase 1 (Nox1) in the process of dopamine (DA) neuronal death. We found that MMP3 activation causes the induction of Nox1 via mitochondrial reactive oxygen species (ROS) production and subsequently Rac1 activation, eventually leading to Nox1-derived superoxide generation in a rat DA neuronal N27 cells exposed to 6-OHDA. While a MMP3 inhibitor, NNGH, largely attenuated mitochondrial ROS and subsequent Nox1 induction, both apocynin, a putative Nox inhibitor and GKT137831, a Nox1 selective inhibitor failed to reduce 6-OHDA-induced mitochondrial ROS. However, both inhibitors for MMP3 and Nox1 similarly attenuated 6-OHDA-induced N27 cell death. RNAi-mediated selective inhibition of MMP3 or Nox1 showed that knockdown of either MMP3 or Nox1 significantly reduced 6-OHDA-induced ROS generation in N27 cells. While 6-OHDA-induced Nox1 was abolished by MMP3 knockdown, Nox1 knockdown did not alter MMP3 expression. Direct overexpression of autoactivated MMP3 (actMMP3) in N27 cells or in rat substantia nigra (SN) increased expression of Nox1. Selective knockdown of Nox1 in the SN achieved by adeno-associated virus-mediated overexpression of Nox1-specific shRNA largely attenuated the actMMP3-mediated dopaminergic neuronal loss. Furthermore, Nox1 expression was significantly attenuated in Mmp3 null mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Together we established novel molecular mechanisms underlying oxidative stress-mediated dopaminergic neuronal death in which MMP3 activation is a key upstream event that leads to mitochondrial ROS, Nox1 induction and eventual dopaminergic neuronal death. Our findings may lead to the development of novel therapeutic approach
    corecore